Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

From Mendeleev to Modern: A Brief History of the Periodic Table, Slides of History

Inorganic ChemistryPhysical ChemistryOrganic ChemistryAnalytical Chemistry

An in-depth exploration of the history of the periodic table, from the early discoveries of elements and the recognition of patterns in their properties, to the work of scientists like dmitri mendeleev, john newlands, and jean baptiste dumas, who contributed to the development of classification schemes and the first periodic tables. The document also discusses the discoveries of ernest rutherford, a. Van den broek, and henry moseley, which led to the modern understanding of the periodic law based on atomic number rather than atomic weight.

What you will learn

  • What was the significance of the Law of Triads and the Law of Octaves in the development of the periodic table?
  • Who were the scientists who contributed to the development of the first periodic tables?

Typology: Slides

2021/2022

Uploaded on 09/12/2022

ekaram
ekaram 🇺🇸

4.7

(27)

16 documents

1 / 4

Toggle sidebar

Related documents


Partial preview of the text

Download From Mendeleev to Modern: A Brief History of the Periodic Table and more Slides History in PDF only on Docsity! This outline was created by Western Oregon University A BRIEF HISTORY OF THE DEVELOPMENT OF THE PERIODIC TABLE Although Dmitri Mendeleev is often considered the "father" of the periodic table, the work of many scientists contributed to its present form. In the Beginning A necessary prerequisite to the construction of the periodic table was the discovery of the individual elements. Although elements such as gold, silver, tin, copper, lead and mercury have been known since antiquity, the first scientific discovery of an element occurred in 1649 when Hennig Brand discovered phosphorous. During the next 200 years, a vast body of knowledge concerning the properties of elements and their compounds was acquired by chemists (view a 1790 article on the elements). By 1869, a total of 63 elements had been discovered. As the number of known elements grew, scientists began to recognize patterns in properties and began to develop classification schemes. Law of Triads In 1817 Johann Dobereiner noticed that the atomic weight of strontium fell midway between the weights of calcium and barium, elements possessing similar chemical properties. In 1829, after discovering the halogen triad composed of chlorine, bromine, and iodine and the alkali metal triad of lithium, sodium and potassium he proposed that nature contained triads of elements the middle element had properties that were an average of the other two members when ordered by the atomic weight (the Law of Triads). This new idea of triads became a popular area of study. Between 1829 and 1858 a number of scientists (Jean Baptiste Dumas, Leopold Gmelin, Ernst Lenssen, Max von Pettenkofer, and J.P. Cooke) found that these types of chemical relationships extended beyond the triad. During this time fluorine was added to the halogen group; oxygen, sulfur,selenium and tellurium were grouped into a family while nitrogen, phosphorus, arsenic, antimony, and bismuth were classified as another. Unfortunately, research in this area was hampered by the fact that accurate values of were not always available. First Attempts At Designing a Periodic Table If a periodic table is regarded as an ordering of the chemical elements demonstrating the periodicity of chemical and physical properties, credit for the first periodic table (published in 1862) probably should be given to a French geologist, A.E.Beguyer de Chancourtois. De Chancourtois transcribed a list of the elements positioned on a cylinder in terms of increasing atomic weight. When the cylinder was constructed so that 16 mass units could be written on the cylinder per turn, closely related elements were lined up vertically. This led de Chancourtois to propose that "the properties of the elements are the properties of numbers." De Chancourtois was first to recognize that elemental properties reoccur every seven elements, and using this chart, he was able to predict the the stoichiometry of several metallic oxides. Unfortunately, his chart included some ions and compounds in addition to elements. Law of Octaves John Newlands, an English chemist, wrote a paper in 1863 which classified the 56 established elements into 11 groups based on similar physical properties, noting that many pairs of similar elements existed which differed by some multiple of eight in atomic weight. In 1864 Newlands published his version of the periodic table and proposed the Law of Octaves (by analogy with the seven intervals of the musical scale). This law stated that any given element will exhibit analogous behavior to the eighth element following it in the table. Who Is The Father of the Periodic Table? There has been some disagreement about who deserves credit for being the "father" of the periodic table, the German Lothar Meyer (see a picture) or the Russian Dmitri Mendeleev. Both chemists produced remarkably similar results at the same time working independently of one another. Meyer's 1864 textbook included a rather abbreviated version of a periodic table used to classify the elements. This consisted of about half of the known elements listed in order of their atomic weight and demonstrated periodic valence chages as a function of atomic weight. In 1868, Meyer constructed an extended table which he gave to a colleague for evaluation. Unfortunately for Meyer, Mendeleev's table became available to the scientific community via publication (1869) before Meyer's appeared (1870). Dmitri Ivanovich Mendeleev (1834-1907), the youngest of 17 children was born in the Siberian town of Tobol'sk where his father was a teacher of Russian literature and philosophy (see a picture). Mendeleev was not considered an outstanding student in his early education partly due to his dislike of the classical languages that were an important educational requirement at the time even though he showed prowess in mathematics and science. After his father's death, he and his mother moved to St. Petersburg to pursue a university education. After being denied admission to both the University of Moscow and St. Petersburg University because of his provincial background and unexceptional academic background, he finally earned a place at the Main Pedagogical Institute (St. Petersburg Institute). Upon graduation, Mendeleev took a position teaching science in a gymnasium. After a time as a teacher, he was admitted to graduate work at St. Petersburg University where he earned a Master's degree in 1856. Mendeleev so impressed his instructors that he was retained to lecture in chemistry. After spending 1859 and 1860 in Germany furthering his chemical studies, he secured a position as professor of chemistry at St. Petersburg University, a position he retained until 1890. While writing a textbook on systematic inorganic chemistry,
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved