Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

AC Steady State Analysis: Problems with Solution, Exercises of Electronic Circuits Design

This is solution for problem related to Basic Engineering Circuit and Network Analysis course. It was suggested by Prof. Kanaka Balasubramanium at Agra University. It includes: Steady, State, Analysis, Frequency, Hertz, Period, Current, Phase

Typology: Exercises

2011/2012
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 07/23/2012

shantinath_111
shantinath_111 🇮🇳

4.5

(40)

99 documents

1 / 63

Toggle sidebar
Discount

On special offer

Related documents


Partial preview of the text

Download AC Steady State Analysis: Problems with Solution and more Exercises Electronic Circuits Design in PDF only on Docsity! Chapter Eight: AC Steady-State Analysis Chapter Eight: AC Steady-State Analysis 623 8.3 Given the following voltage and current i(t) = Ssin(377¢ ~ 20°) V v(t) = 10 cos(377¢ + 30°) V determine the phase relationship between i(7)} and v(r). SOLUTION: | lt) teaels 7 C4) ba Hye%| ee a en he 624 trwin, Basic Engineering Circuit Analysis, 8/E €.4 Determine the phase angles by which v,(7) leads i,(7) and 0, (1) leads i(7), where us) = 4sin(377t + 25°) V i(f) = 0.05 cos(3771 — 20°) A in(f) = ~O.L sin(377# + 45°) A SOLUTION: Telt= Dl Sin Cot ~ 15°) ye Gy, ~ Gg, = 160° | Veteeel tz i } Chapter Eight: AC Steady-State Analysis 625 &.5 Calculate the current im the resistor in Fig. P85 if the volt- age input is {a} v(t) = 10 cos(377r + 180°) 'V. (b) e2(7) = 128in(G77e + 45°) V. Give the answers in both the time and frequency Gomains. Figure P8.5 SOLUTION: AY 120g 1432 See Cart +40) A ts 5/180 A by titl)s & Sin (5776 448°) = bee lst dA Tag leu? A 628 irwin, Basic Engineering Circuit Analysis, 8/E &.© Find the frequency-domain impedance, 7. as shown in Fig. P88. © Figure P&.8 SOLUTION: Chapter Eight: AC Steady-State Analysis 629 &.9 Find the impedance, Z, shown in Fig. PS.9 at a frequency of 60 Hz. 10 mH 20 —_— i ——— me 10 F Figure P8.9 SOLUTION: iy 2 2 f= P99 ~~ By BE 2 Zt jee eV a Lt TE | Be ee wf OSA a pac Zw By 4% 630 Irwin, Basic Engineering Circuit Analysis, 8/E 8.70 Find the impedance, Z. shown in Fig. P8.9 at a frequency of 400 Hz. SOLUTION: Chapter Eight: AC Steady-State Analysis 633 &.73 Find the frequency-domain impedance, Z. shown in Fig. P8.13. FeSe bene © j2.0 ca -j20 Figure P8.13 SOLUTION: fie bez 2 oo. SHOT a G+ te, . g- FP 4 r. te €&, toy te a oe 634 irwin, Basic Engineering Circuit Analysis, 8/E 8.14 Find Z in the network in Fig. P8.14. @9 Figure P8.14 SOLUTION: 2,7 Bg+2e = jin 22,2 Red Da ryoP RD “er By @3> EsZ 2 ostyosn Bye yt 2g = Shon. 23 te 2 ‘ . ; 7 eee Bude 2 0.706 +] OBZ Ss Byte, Ghee Pr B= Z7ou 450. Fak | @= 23 Let’ 2. Lt Chapter Eight: AC Steady-State Analysis 635 &.15 Find Z in the network in Fig. P8.15. gy oO AAP ? res 12 fia S60 Py S40 & 4 Fy. Zao es [ O= ée Figure P8.15 SOLUTION: - Necliran:: 638 Irwin, Basic Engineering Circuit Analysis, 8/E 8.48 Draw the frequency-domain circuit and calculate v(r) for the circuit shown in Fig. P8.18 if is(t) = 20c08(377f4+ 120° AL SE iso) v(t) 10 $100 mH = =x 10 mF Figure P8.1& SOLUTION: . ~~ bOEY > Bile cae C8794 dae yt Sy Chapter Eight: AC Steady-State Analysis 639 i i t L 6.19 Draw the frequency-domain circuil and calculate v(r) forthe circuit shown in Fig. P8.19 if i,(2) = 2 cos (10007 + 120°) A. oe pi me + ve K : 2 isft) t) off L, 3 10 mH Le 3 2mH Figure P8.19 SOLUTION: g Be pang 4b 4 Tee 2 fleo® A Ve 640 Irwin, Basic Engineering Circuit Analysis, 8/E 8.20 Draw the frequency-domain network and calculate v,(1) in the circuit shown in Fig, P8.20 if v.(7) is A sin(S00r + 45°) V and is(r) is L cos(5007 + 45°) A. Also, use a phasor diagram to determine v,(1}. 333 pF 90 O te ~ hhh (1) + v(t) *) 20 mH Se U_lt) q is(t) Figure P8.26 SOLUTION: y_ ¥ m pea Ve 2 4Z9SP NV os 1 LS Ny Po 2 pe be oes ~br Bis Gols {lor Supeepess hin! Vo= Vg [sy Voy Ta. Ze ] Felt de J the Vo2 o Ls? V z oo Stow ( %00 cbt 9 vi Ny = Ve ~Ne = ~ 4 [ i) = 4 gh. (seed ASV | ~~ ee re i Chapter Eight: AC Steady-State Analysis 643 Lr 9% Se 89% Se In the circuit shown in Fig. P8.23, determine the value of the inductance such that the current is in phase with the source voltage. PS@ 4Q 12 cas (1000f + 75°) V G e OE, If iy 700 uF Figure P8.23 SOLUTION: . ~ r we DE Vs #E ore in phase dh A ry 4 . , ol 2 Les? vCE) a Set Ms. Regt jo = a Ze de Lod 5 oun ; ee Cr Gy tte no 4 | e- flO -) B= jor 644 Irwin, Basic Engineering Circuit Analysis, 8/E 224 The impedance of the box in Fig. P8.24is 5 + ja © at 1000 rad/s. What is the impedance at 1300 rad/s? Ca neeerecnme ier coset Cn Figure P&.24 SOLUTION: x= = Ras, a = chet i = = a joes @ loztooo vis => begs bre ak = Woo cls Zn Rag £7 (1300) (o-0a85 A Chapter Eight: AC Steady-State Analysis 645 8.25 The admittance of the box in Fig. P8.25 is 0.1 + 70.2 S at 500 rad/s.What is the impedance at 300 rad/s? a Yo ny Figure P8.25 SOLUTION: Y= O1 440-2 9 © Lb W& =0.2 @ sverls i 5 wo “ ° é Joly 648 irwin, Basic Engineering Circuit Analysis, 8/E £.28 The currents ip(t) and i¢(r) in the circuit shown in Fig. P8.28 can be drawn as phasors in a phasor diagram. Use the diagram to show that ig(4) + i¢(t) = ig(t). ic os aS is) vf) S19 =e 100 pF 10 cos (377f + 30°} A Figure P&.28 SOLUTION: i ' t i i Chapter Eight: AC Steady-State Analysis 649 & No iD ' Draw the frequency-domain network and calculate »,(1) in the circuit shown in Fig, P8.29 if io(2) is 300 sin(10*r ~ 45°) mA. Also, using a phasor diagram, show that i,(t) + (4) = it), S% fac | i5(2) gs 200 oe 3.33 BF is) volt) 6mH 3 100 She Figure P8.29 SOLUTION: Z= jbo Ze =-j3e z SPpt_ = 2orjyeon @_5 Rath = lo-j3en Eys Ty @e (Ore = 0.224 Lope? A Ty = Ed, C2, +h) = 0 eee Liga Vee U4, = aa [18 V Yolt\< )4-1 ce lieth + eu] 650 trwin, Basic Engineering Circuit Analysis, 8/E &.G0 Find the value of C in the circuit shown in Fig. P8.30 so that Z is purely resistive at the frequency of 60 Hz. 10 5 mH oO Sey a i—-— aC Cnr cr remnant riommenr ene Figure P8.30 SOLUTION: G2 er e+, = eg Mauser td foe ob Chapter Eight: AC Steady-State Analysis 653 €.23 In the circuit shown in Fig. P8.33. determine the value of the inductance such that v(f) is in phase with is(?). 20. ~ | ist) OD [—— 10 mF aL u(r) cos (377f + 30°) A +0 Figure P&,33 SOLUTION: 2 DT wll AQ 2, ap ag o-7o4 mt Regus i a 654 trwin, Basic Engineering Circuit Analysis, 8/E 8.84 Find the current E shown im Fig. P8.34. 10/0" A ) S10 = j10 I Figure P 8.34 SOLUTION: ~ po Vos | jo® jis ta To.7 fase a voter (It) | sc: 4| unereee tetra airtime Chapter Eight: AC Steady-State Analysis 655 6.35 Find the voltage V shown in Fig. P8.35. Figure P&.35 SOLUTION: Ve too Lat f LN PVs ey [eest y tad to 658 Irwin, Basic Engineering Circuit Analysis, 8/E &.38 Given the network in Fig. PS.38, determine the value of V, if Vy = 24 /0° Vv. 20 j2o é f A LOPS O & + : Vs é ia Vi 205%, Y, O Figure P8.38 SOLUTION: ~~ a @o=besd 2 a+janr foe Wi Fe 2 PTF Ly pate", Ey te fe gl Chapter Eight: AC Steady-State Analysis 659 8.39 Pind Vs in the network in Fig. P8.39. if V, = 4/0° V. 0 id, lank: he —-p i K 7 C, + @ S10 VV, 220 om 8 22 [* os Figure P8.39 SOLUTION: rm Za be $2 2 a T, Tips Tye HyZA Vs = Tete -V; = “8453 V [vs= 3.54 frisa.¢? vy 660 Irwin, Basic Engineering Circuit Analysis, 8/E +0 oO Figure P8.40 SOLUTION: Lor Thenensa’s Themrem ! NN penne ene ae em 2 4 e A “LT a Vous be ftsorv | L Dieserv Ee Vag, ~ iL cede eg tnee Ore Be phe . poe Le Vix “12282 f ks 2L0VG) 22 v, (Beez! Chapter Eight: AC Steady-State Analysis 842 ILL, = 4/0° A in the circuit in Fig 663 . P8.43, find £,. e109 Vite SP ke Figure P8.43 SOLUTION: res Khas aif'v Epps Te -2lete 2 Lora Vos Veet Vayse £0°V Bea Ve Aap joa Vetbin= Yegt4 => apes Vv Tee Ver/ bes WA Tt Tht Tey eye ieefe A Nos Ey Gh = b+ jley ~j tha 664 Irwin, Basic Engineering Circuit Analysis, 8/E 5.44 TfL, = 4/0° A in the network in Fig. P8.44, find 7,. 10 Figure P8.44 SOLUTION: y= OYE, = 4[9¢v ht SPT. a & LOA Wos iE, = by Le? Vv Na 2 Vie, apo lor y Epes Ve fost = jlwA Vas \ai8-Vea = Zia f3- Val, 2 2/24 Ty« Tar, -h, = aejiok Ve a(UTy = 4rjioa Ve ea Vy Ve 5 2 rjiov Des Ve A> Bryied Chapter Eight: AC Steady-State Analysis 665 8.48 in the network in Fig. P8.45, V, is known to be 4 /45° V, Find &. Xe © if O a, Yr, ~f1 2 + 12/0°V Z 192 ¢ Vo tt OQ Figure P8.4& SOLUTION: ~ Ths Yo. 4 LSTA Vas TC ee-jh = Weley fe, 7 Ty Tye 2 2as 83/7 A 668 lrwin, Basic Engineering Circuit Analysis, 8/E : &.4& Using nodal analysis, find 1, in the circuit in Fig. P8.48, ‘ Figure P8&.48 SOLUTION: Wale yp ee Ve eee lg ue BMV gE ae 3 . 3 —o a VarM Ye og Soe wy e¥e Cia) =4 Chapter Eight: AC Steady-State Analysis &4%9 Determine V, in the circuit in Fig. P8.49, 669 Figure P8.49 SOLUTION: y 1a 2 { K e a : c A jaa. 3 12,0°V | eS ~fet, 4+ B2(sej~s0 | Ted. te /33e7% A 670 Irwin, Basic Engineering Circuit Anaiysis, 8/E &.50 Using nodal analysis, find 1, in the circuit in Fig. P8.40. wa OV i2Aey 2/0" A ie @ 408% “Oss “4 ase) Figure P8,.50 SOLUTION: - ~ Chapier Eight: AC Steady-State Analysis 673 ' 6.53 Find ¥, in the network in Fig, P8.53 using nodal analysis, (PSV hy 1 Vv Bs : A if Ww 20 ito | 70 | j22 3 weeev (4) af A CL) o @)aerv 20S te Vo Figure P8.53 | t SOLUTION: Vel yoy Vio ved oo Vo = ¥ 62) Z-j! 2452 ! 2rju 674 Irwin, Basic Engineering Circuit Analysis, 8/E 6.54 Find L, in the circuit in Fig. P8.54 using nodal analysis. 10 aq Figure P8.54 SOLUTION: — @v, Wy, Cr jy) wVes epi (Ng, HNQ AEM, 2 1k Chapter Eight: AC Steady-State Analysis 675 &.55 Use the supernode technique to find I, in the circuit in Fig. P8.55, ay 120° V = K ey ] 193 20% © j20 ae 20 I, | 5.7 678 Irwin, Basic Engineering Circuit Analysis, 8/E &.58 Use nodal analysis to find V, in the circuit in Fig. P&.38. 6/orV¥ QT ° 1O5. la Vo 2/0 A ; Figure P&,58 SOLUTION: ° a VinVe = Ge vaya 12 Le VaNe = Ve Ve22Vo at Gu woe Vo a Ye 4¥a. gen? iptie Vitple7 [Wa pve 22 { aby oh 1 z 2 i SO \ ° cm Chapter Eight: AC Steady-State Analysis 679 8.89 The low-frequency equivalent circuit for a common- emitter transistor amplifier is shown im Fig. P8§.59. Vs. Compute the voltage gain V,/ Figure P8,39 SS SOLUTION: \eres/ | jOe term H ) 680 Irwin, Basic Engineering Circuit Analysis, 8/E £.60 Use nodal analysis to find V, in the circuit in Fig. P8.60. eS ¥ 124° V a ane CS jo ia y «FD vy +0 Figure P8,60 SOLUTION: VioV = cadet y VavYo Vom a7 %ol tay) Fo Yh 4 J @ sore: BY AV a Va 4 Vo oy where Uy > Ve, { ih i J eo v, #42 (241) No xo Py ~t © | vy ' | he le ' bap va ie = baa | Ve in 2434 L. ay Le ol
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved