Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Answers to Homework #7 - Introduction to Quantum Mechanics 1 | PHYS 5250, Assignments of Quantum Mechanics

Material Type: Assignment; Professor: Radzihovsky; Class: Introduction to Quantum Mechanics 1; Subject: Physics; University: University of Colorado - Boulder; Term: Unknown 1989;

Typology: Assignments

Pre 2010

Uploaded on 02/10/2009

koofers-user-j5o-2
koofers-user-j5o-2 🇺🇸

10 documents

1 / 17

Toggle sidebar

Related documents


Partial preview of the text

Download Answers to Homework #7 - Introduction to Quantum Mechanics 1 | PHYS 5250 and more Assignments Quantum Mechanics in PDF only on Docsity! Quantum Mechanics - 1: HW 7 Solutions Leo Radzihovsky Paul Martens November 28, 2007 1 Problem 1 3D Spherical square-well potential. Suppose V (r) = { −V0 r < d 0 r > d (1) 1.1 a: Boundstates For these states E < 0. Define: Rn` (r) = Un` (r) r (2) The radial equation for U − ~ 2 2m d2Un` (r) dr2 + ( V (r) + ~ 2` (` + 1) 2mr2 ) Un` = En`Un` (3) 1.1.1 i: spectrum for general ` Solve for internal and external separately then match boundary conditions. 0 < r < d ⇒ V (r) = −V0 ⇒ free schr. solutions with E → E + V0 d2R dr2 + 2 r dR dr + ( κ2 − ` (` + 1) r2 ) R = 0 (4) where κ ≡ √ 2m (V0 − |E|) ~2 (5) we require a regular solution at r = 0; therefore Rn` (r) = Aj` (κr) (6) for the external solution d2R dr2 + 2 r dR dr + ( −α2 − ` (` + 1) r2 ) R = 0 (7) 1 where α ≡ √ 2m |E| ~2 (8) outer solution is R (r) = Bj` (ıαr) + Cn` (ıαr) (9) we need a decaying solution, which is a spherical Hankel function of the first kind. h (1) ` ≡ j` + ın`. Matching boundary conditions leads to a discrete spec- trum. κ j′` (κd) j` (κd) = ıα h (1)′ ` (ıαd) h` (ıαd) (10) 1.1.2 ii: ` = 0 case { U ′′ + κ2U = 0 0 < r ≤ d U ′′ − α2U = 0 d < r (11) Solution is U (r) = { A sin κr 0 < r ≤ d Be−αr d < r (12) BC B A = eαd sinκd (13) The wavefunction is ΨE0 (r) = { A r sin κr 0 < r ≤ d B r e −αr d < r (14) spectrum is found through the relation κ cosκd sinκd = −α = − √ 2m ~2 V0 − κ2 (15) κ2 = ( κ2 + α2 ) ︸ ︷︷ ︸ 2m ~2 V0 sin2 κd (16) sinκd = ± √ ~2 2md2V0 κd (17) 2 therefore C B = − tan δ` (k) (32) 1.2.3 iii For ` = 0 R0 (r) = { 1 r (B sin kr − C cos kr) r > d A r sin kr 0 ≤ r ≤ d (33) ¿From Continuity BC’s A sinκd = B sin kd − C cos kd (34) Aκ cosκd = Bk cos kd + Ck sin kd (35) κ cotκd = k B cos kd + C sin kd B sin kd − C cos kd (36) κ k cotκd = cot kd − CB 1 − CB cot kd (37) κ k cotκd − cot kd = C B (κ k cot κd cot kd − 1 ) (38) C B = κ k cot κd − cot kd κ k cotκd cot kd − 1 (39) C B = − tan δ0 (k) = tan kd − kκ tan κd 1 − kκ tan kd tanκd (40) define κ0 ≡ √ emV0~ 2 (41) x ≡ kd (42) x0 ≡ κ0d (43) in terms of these new parameters κ = κ0 √ 1 + ( k κ0 )2 cot δ0 = x tan x tan " x0 r 1+ “ x x0 ”2 # x0 r 1+ “ x x0 ”2 − 1 x   1 + 13x 2 − 1x0 tan " x0 r 1− “ x x0 ”2 # r 1+ “ x x0 ”2    (44) one can expand this in terms of k k cot δ0 ≈ − 1 a + 1 2 r0k 2 (45) 5 a ≡ ( 1 − tan κ0d κ0d ) d (46) r0 ≡ 2d ( 1 κ0d tanκ0d + 1/3− 1 2κ20d 2 + tan κ0d 2(κ0d) 3/2 − tan 2 κ0d 2κ20d 2 1− tan κ0dκ0d ) 1 − tan κ0dκ0d (47) a = d ( 1 − tanκ0d κ0d ) (48) r0 = 2d    1 κ0d tan κ0d 1 − tanκ0d + 1 3 − 12κ20d2 + tan κ0d 2(κ0d) 3/2 − tan 2 κ0d 2κ20d 2 ( 1 − tan κ0dκ0d )2    (49) 0.5 1 1.5 2 2.5 3 Κ0d -10 -7.5 -5 -2.5 2.5 5 7.5 10 a €€€€ d Diverging Scattering Length Note that: (1): scattering length a diverges (changing sign from negative to positive) at κ0d = π 2 , which implies 2mV ∗0 d 2 ~2 = π2 4 ⇒ V ∗0 = π2~2 8md2 = V0C (50) ie. a → ∞ when V0 → V −0C as a bound state comes in (2): r0 is smooth and finite near V0C . 1.2.4 iv for V0 → ∞, κ0d → ∞. a = d ( 1 − tan κ0d κ0d ) → d (51) 6 1 1.25 1.5 1.75 2 2.25 Κ0d -20 -15 -10 -5 r0€€€€€€€ d Well Behaved Effective Range 1.2.5 v κ j′` (κd) j` (κd) = k j′ell (kd) + C B n ′ ` (kd) j` (kd) + C B n` (kd) (52) κ j′` (κd) j` (κd) j` (kd) + κ j′` (κd) j` (κd) n` (kd) C B = k ( j′` (kd) + C B n′` (kd) ) (53) ⇒ C B ( κ j` (κd) j` (κd) n` (kd) − kn′` (kd) ) = kj′` (kd) − κ j′` (κd) j` (κd) j` (kd) (54) in the limit kd → ∞ n` (kd) → − (kd) ` (2` + 1)!! (55) j` (kd) → (kd) ` (2` + 1)!! (56) ⇒ C B ( −κ0 j` (κ0d) j` (κ0d) (kd)−(`+1) (2` + 1)!! − k (` + 1) (kd) −(`+2) (2` + 1)!! ) (57) ≈ ` (2` + 1)!! k (kd) `−1 − κ0 j′` (κ0d) j` (κd) (kd)` (2` + 1)!! (58) solving the above expression for CB . C B = − (kd)2`+1 ` d − κ0 j′`(κ0d) j`(κ0d) `+1 d + κ0 j′ ` (κ0d) j`(κ0d) (59) 7 consider a spin- 12 particle. (j = 1 2 and m ∈ { − 12 , 12 } ). Then 〈jm |Jx| jm′〉 ≡ Jxmm′ (81) = ~ 2 (√ 3 4 + 1 4 δm,m−1 + √ 3 4 + 1 4 δm,m+1 ) (82) 〈jm |Jx| jm′〉 ≡ ~ 2 σx (83) likewise Jym,m′ = ~ 2ı (δm,m−1 − δm,m+1) ≡ ~ 2 σy (84) Jzm,m′ = ~mδm,m′ ≡ ~ 2 σz (85) Therefore σx = ( 0 1 1 0 ) σy = ( 0 −ı ı 0 ) (86) σz = ( 1 0 0 −1 ) 3.2 b [σi, σj ] = 2ıijkσk (87) {σi, σj} = 2δij (88) 3.2.1 i 2σiσj = [σi, σj ] + {σi, σj} (89) = 2δij + 2ıijkσk (90) Tr [σiσj ] = 2δij (91) 3.2.2 ii (~a · ~σ) ( ~b · ~σ ) = aibjσiσj (92) = aibj (δij + ıijkσk) (93) (~a · ~σ) ( ~b · ~σ ) = ~a ·~b + ı ( ~a ×~b ) · ~σ (94) 3.3 c n̂ · ~σ = nxσx + nyσy + nzσz (95) n̂ · ~σ = ( cos θ sin θe−ıφ sin θeıφ − cos θ ) (96) 10 3.3.1 i: eigen values and vectors ∣ ∣ ∣ ∣ cos θ − λ sin θe−ıφ sin θeıφ − (cos θ + λ) ∣ ∣ ∣ ∣ = 0 (97) ⇒ λ = ±1 (98) Finding eigen vectors (cos θ − 1) α+ + sin θe−ıφβ+ = 0 (99) ( −2 sin2 θ 2 ) α+ + 2 sin θ 2 cos θ 2 e−ıφβ+ = 0 (100) ⇒ Ψn̂+ = ( cos θ2 eıφ sin θ2 ) (101) (cos θ + 1) α− + sin θe −φβ− = 0 (102) ( 2 cos2 θ 2 ) α− + 2 sin θ 2 cos θ 2 e−ıφβ− = 0 (103) ⇒ Ψn̂− = ( sin θ2 −eıφ cos θ2 ) (104) 3.3.2 ii: rotating e−ı θ 2 θ̂·~σ = cos θ 2 − ıθ̂ · ~σ sin θ 2 (105) =   cos θ2 − ıθ̂z sin θ2 ( −ıθ̂x − θ̂y ) sin θ2 ( −ıθ̂x + θ̂y ) sin θ2 cos θ 2 + ıθ̂z sin θ 2   (106) θ̂ = ẑ × n̂ |ẑ × n̂| = 1 √ n2x + n 2 y (−nyx̂ + nyŷ) (107) where n̂ ≡ x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ. θ̂ = − sin φx̂ + cosφŷ (108) so e−ı θ 2 θ̂·~σ = ( cos θ2 −e−ıφ sin θ2 eıφ sin θ2 cos θ 2 ) (109) Eigenvectors through rotation Ψn̂+ = e −ı θ2 θ̂·~σΨẑ+ = ( cos θ2 eıθ sin θ2 ) (110) 11 Ψn̂− = e −ı θ2 θ̂·~σ = ( − sin θ2e−ıφ cos θ2 ) (111) In operator language (n̂ · ~σ) Un̂U †n̂Ψn̂± = λ±Ψn̂± (112) U †n̂ (n̂ · ~σ) Un̂ ︸ ︷︷ ︸ σz ( U †n̂Ψ n̂ ± ) = λ± ( U †n̂Ψ n̂ ± ) (113) σz ( U †n̂Ψ n̂ ± ) = ± ( U †n̂Ψ n̂ ± ) (114) eigenvectors Ψn̂+ = Un̂ ( 1 0 ) (115) Ψn̂− = Un̂ ( 0 1 ) (116) 3.4 d: Eigenvalues and vectors of S x + S z for S = ~ 2 suppose O = Sx + Sz = ~ 2 (σx + σz) = ~ 2 ( 1 1 1 −1 ) (117) Eigenvalues from the characteristic equation −1 + λ2 − 1 = 0 ⇒ λ± = ± √ 2 (118) where n̂ = 1√ 2 (x̂ + ẑ) (119) or φ = 0, θ = π4 . We calculate the eigenvectors directly ( 1 − √ 2 ) α + β = 0 (120) Ψ+ = N ( −1 1 − √ 2 ) (121) Ψ− = N ( 1 − √ 2 1 ) (122) where N = 1√ 1+1+2−2 √ 2 = 1√ 4−2 √ 2 . This agrees with the result we get by rotating the eigenvectors of σz . Ψ+ = ( cos π8 sin π8 ) = (√ (cosπ4 + 1) /2 √ ( 1 − cos π2 ) /2 ) = 1 2 1 √ 1 − 1/ √ 2 ( 1 − ( 1 − √ 2 ) ) (123) 12 and by using cos θ = Bz √ B2x + B 2 z (150) sin θ = Bx √ B2x + B 2 z (151) Ψ+ (t) = ( cos2 θ2e −ıω0t/2 + sin2 θ2e ıω0t/2 cos θ2 sin θ 2 ( e−ıω0t/2 − eıω0t/2 ) ) (152) = ( 1 2 (cos θ + 1) (−2ı) sin ω0t2 + eıω0t/2 −ı sin θ sin ω0t/2 ) (153) Ψ+ (t) =   cos ω0t2 − ı Bz√ B2x+B 2 z sin ω0t2 −ı Bx√ B2x+B 2 z sin ω0t2   (154) 3.6 f The Maximum eigen value of S2tot = ~ 2Stot (Stot + 1). Where Stot = 1 2 + 1 2 + · · · + 1 2 ︸ ︷︷ ︸ N = N2 . In ket form ∣ ∣ ∣ ∣ N 2 , N 2 〉 = ∣ ∣ ∣ ∣ 1 2 1 2 〉 ∣ ∣ ∣ ∣ 1 2 1 2 〉 · · · ∣ ∣ ∣ ∣ 1 2 1 2 〉 (155) which is symmetric. The lowering operator S−tot = S (x) tot − ıS (y) tot (156) = ( S−1 + S − 2 + S − 3 + · · · + S−N ) (157) is also symmetric, which means that ( S−tot )n ∣ ∣ ∣ ∣ N 2 N 2 〉 = ∣ ∣ ∣ ∣ N 2 , N 2 − n 〉 (158) must also be symmetric. 3.7 g Hd = 1 r3 [~µ1 · ~µ2 − 3 (~µ1 · r̂) (~µ2 · r̂)] (159) we choose ẑ to be in the same direction as r̂. Hd = − ( gµPB )2 ~2a3 [ ~S1 · ~S2 − 3S1zS2z ] (160) 15 ( ~S1 + ~S2 )2 = S21 + S 2 2 + 2 ~S1 · ~S22 (161) S2 = ~2S (S + 1) = ~2S1 (S1 + 1) + ~ 2S2 (S2 + 1) + 2~S1~S2 (162) (S1z + S2z) 2 = S21z + S 2 2z + 2S1zS2z = S 2 z (163) so Hd = − ( gµPB )2 a3 [ 1 2 S (S + 1) − 1 2 S1 (S1 + 1) − 1 2 S2 (S2 + 1) − 3 2 ( S2z − S21z − S22z ) ] (164) Hd = − ( gµPB )2 2a3 [ S (S + 1) − 3 2 − 3 ( S2z − 1 2 )] (165) Hd |S, Sz; S1, S2〉ES,Sz |S, Sz; S1, S2〉 (166) S = 0; 1 Sz = 0; 0,±1 { ⇒ ES,Sz = −2 µ (P )2 B a3 ( S (S + 1) − s2z ) (167) Energy levels are E0,0 = 0 (168) E1,0 = − 4µ (P )2 B a3 (169) E1,±1 = 2µ (P )2 B a3 (170) 4 Problem 4: 3D charge particle in constant B- field 4.1 a H = ( ~p − q ~A c )2 /2m (171) ~A = 1 2 ~B × ~r =   −By2 Bx 2 0   (172) we use the the radiation gauge ~∇ · A = 0, in which case ~p · ~A = ~A · ~p. H = p2 2m − q 2mc ( ~B × ~r) · ~p ︸ ︷︷ ︸ ~r×~p·~B + q2B2 8mc2 ( x2 + y2 ) (173) = P 2perp 2m − q 2mc BLz + q2B2 8mc2 r2perp − p2z 2m (174) 16 H |kz〉 = ( p2perp 2m + q2B2 8mc2 r2perp − qB 2mc Lz + ~ 2k2z 2m ) |kz〉 = E |kz〉 (175) This is an effective 2D H.O. with an extra − qB2mcLz term. H2D |E2D〉 = E2D |E2D〉 (176) E2D + ~ 2k2z 2m = E (177) H2D = p2perp 2m + mω20 2 r2perp − ΩLz (178) with ω0 = qB 2mc (179) Ω = qB 2mc (180) 4.2 b This has energy spectrum En,m = ~ω0 (n + 1) (181) note that when 4ω0 = Ω = 1 2ωB that the Landau levels are spaced ~ωB apart. This agrees with our result done in Cartesian coordinates. 4.3 c Compare − qB2mcLz and diamagnetic q2B2 8mc2 r 2 perp for an e − in an atom. R = q2B2 8mc2 〈 r2perp 〉 qB 2mc 〈LZ〉 = qBa20 4~c (182) become comparable for R ≈ 1. B∗ = ~c ea20 (183) R = e2 4~c B e/a20 = B ∗ ( 0.5 ∗ 10−8cm )2 4 ∗ 137 ∗ 4.8 ∗ 10−10esu (184) R ≈ B 9 ∗ 109Guass (185) B∗ ∼ 9 × 109Gauss (186) under typical conditions B  B∗, which means diamagnetic term is negligible in atomic physics. 17
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved