Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Antennas and Radiation - Lecture Slides | ECE 3317, Study notes of Electrical and Electronics Engineering

Material Type: Notes; Professor: Jackson; Class: Applied Electromagnetic Waves; Subject: (Electrical and Comp Engr); University: University of Houston; Term: Unknown 1989;

Typology: Study notes

Pre 2010

Uploaded on 08/18/2009

koofers-user-q03
koofers-user-q03 🇺🇸

10 documents

1 / 39

Toggle sidebar

Related documents


Partial preview of the text

Download Antennas and Radiation - Lecture Slides | ECE 3317 and more Study notes Electrical and Electronics Engineering in PDF only on Docsity! ECE 3317 Prof. David R. Jackson N t 22o es Antennas and Radiation [Chapter 7] Antenna Radiation Antenna Radiation We consider here the radiation from an arbitrary antenna. z ( ), ,r r θ φ S +- y r x r → ∞ "far field" The far-field radiation acts like a plane wave going in the radial direction. Antenna Radiation (cont.) Hence we have ( )22 1ˆS E E 2r θ φ ⎛ ⎞ = + ⎜ ⎟ ⎝ ⎠0η or 2E ˆS 2 r ⎛ ⎞ = ⎜ ⎟ ⎜ ⎟ 0η⎝ ⎠ Note: in the far field, the Poynting vector is pure real (no reactive power flow). Radiation Pattern Th f fi ld l h th f ll i fe ar e a ways as e o ow ng orm: ( ) ( ) 0 E , , E , jk r Fer θ φ θ φ −⎛ ⎞ = ⎜ ⎟ ⎝ ⎠r ( )E ,F θ φ ≡ Normalized ar - field electric fieldf In dB: ( ) ( ) ( )10 E , dB , 20log F F θ φ θ φ ⎛ ⎞ ⎜ ⎟= ⎜ ⎟E ,m mθ φ⎝ ⎠ ( ),m mθ φ = direction of maximum radiation Radiation Pattern (cont.) The far-field pattern is usually shown vs. the angle θ (for a fixed angle φ) in polar coordinates. ( ) ( )E , dB 20log F θ φ θ φ ⎛ ⎞ ⎜ ⎟= ⎜ ⎟( )10 , E ,F m mθ φ⎝ ⎠ θ 30°30° 60° 60° 0φ = 0 dB θ -10 dB 120° 120° m-20 dB -30 dB 150° 150° Directivity (cont.) Th di ti it i d i t f th f fi ld tte rec v y s now expresse n erms o e ar e pa ern. ( ) ( )( )2 S , , / 4 rD r P r θ φ θ φ π ≡ → ∞ rad ( ) 2E 1F θ φ⎛ ⎞⎛ ⎞⎜ ⎟ Hence we have ( ) ( ) 2 0 2 2 2 , 2 , 4 1 F r D r rπ π η θ φ π ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠= → ∞ ∫ ∫ 0 0 0 E , sin 2 d dθ φ θ θ φ η Therefore, ( ) ( ) ( ) 2 2 2 4 E , , E sin F F D d d π π π θ φ θ φ θ φ θ θ φ = ∫ ∫ 0 0 , Directivity (cont.) Two Common Cases Short dipole wire antenna (l << λ0): D = 1.5 Resonant half-wavelength dipole wire antenna (l = λ0 / 2): D = 1.643 +h z feed 2l h= y x -h Beamwidth The beamwidth measures how narrow the beam is (The narrower the . beamwidth, the higher the directivity). HPBW = half-power beamwidth Infinitesimal Dipole (cont.) ⎡ ⎤⎛ ⎞ The exact fields of the infinitesimal dipole in spherical coordinates are 0 0 2 0 I 1 11 cos 2 jk r r lE e r jk r η θ π −= +⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎣ ⎦ 0 0 2 0 0 I 1 1 1( ) 1 sin 4 ( ) jk rlE j e r jk r jk rθ ωμ θ π − ⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎣ ⎦ 0 0 0 I 1 1( ) 1 sin 4 jk rlH jk e r jk rφ θ π − ⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎣ ⎦ Infinitesimal Dipole (cont.) In the far field we have: 0 0 I ( ) sin 4 jk rl eE jθ ωμ θ −⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ∼ 0 0 I ( ) sin 4 jk r r l eH jk rφ π θ π −⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ∼ 0 I ( )sinF lE jθ ωμ θ= Hence, we can identify 0 4 I ( )sin 4 F lH jkφ π θ π = Infinitesimal Dipole (cont.) The radiation pattern is shown below . 0 I ( )sinF lE jθ ωμ θ= 4π θ 30°30° 60° 60° -9 -3-6 0 dB 120° 120° 150° 150° Infinitesimal Dipole (cont.) l ( ) 23, sin 2 D θ φ θ=0 I ( )sin 4 FE jθ ωμ θπ = θ 30°30° ( ), 1.0D θ φ = ( )o54 7θ 0 dB 60° 60° .= -9 -3-6 ( ), 1.5D θ φ = 120° 150° 150° 120° The far-field pattern is shown, with the directivity labeled at various points. Wire Antenna A center-fed wire antenna is shown below . +h z I (z) feed 2l h= yI 0 x -h I⎛ ⎞ ⎡ ⎤ A good approximation to the current is: ( ) ( ) 0 0 0 I( ) sin sin z k h z k h = −⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎝ ⎠ Wire Antenna (cont.) A sketch of the current is shown below. ( ) ( ) 0 0 0 II( ) sin sin z k h z k h ⎛ ⎞ ⎡ ⎤= −⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎝ ⎠ +h l +h l h h resonant dipole (l = λ0 / 2, k0h = π/2) - short dipole (l <<λ0 / 2) ⎡ ⎤ - ⎛ ⎞ 0I( ) I 1 z z h ≈ −⎢ ⎥ ⎣ ⎦ 0I( ) I cos 2 z z h π = ⎜ ⎟ ⎝ ⎠ Wire Antenna (cont.) z Far-field observation point +h R ( ), ,x y z y feed rdz' x ( ) ( ) ( ) 22 2 'R x y z z= + + − -h ( )2 2 2 2 2 2 ' 2 ' ' 2 ' x y z z zz r z zz = + + + − = + − 2 2 2 '1 2z zzr r r ′⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ '1 2z z zr r r r ′⎛ ⎞ ⎛ ⎞⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ Wire Antenna (cont.) z Far-field observation point +h r R ( ), ,x y z y feed dz' θ x h cos /z rθ = - ( ) ( ) ( ) 2'z z z z′ ′ ′⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞1 2 cos 1 2 cos 1 cos cos R r r r r r r r r z θ θ θ θ = + − ≈ − ≈ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ′= − 1 1 2 xx+ ≈ +Note: 1x << Wire Antenna (cont.) z Far-field observation point +h R ( ), ,x y z y feed rdz' x ( ) ( ) 0 cos 0 1 ( )sin I 4 cos h jk r zeE j z dz r z θ θ ωμ θπ θ ′− − ′ ′≈ ′∫-h ( ) ( ) 0 0 cos 0 1 ( )sin I 4 1 / cos h hjk r jk z h e ej z dz r z r θ ωμ θ π θ − ′− + − ⎛ ⎞ ′ ′= ⎜ ⎟ ′−⎝ ⎠ ∫ ( ) 0 0 cos 0 1 ( )sin I 4 hjk r jk z h ej e z dz r θωμ θ π − − ′+ − ⎛ ⎞ ′ ′≈ ⎜ ⎟ ⎝ ⎠ ∫ Wire Antenna (cont.) In summary, we have ( ) 0 0 1 ( )sin jk reE j AFθ ωμ θ θ −⎛ ⎞ ≈ ⎜ ⎟ ( ) 0 0 0I cos( cos ) cos( )2 k h k hAF θθ ⎛ ⎞ ⎡ ⎤− ⎜ ⎟ ⎢ ⎥ 4 rπ ⎝ ⎠ ( ) 20 0sin sink h k θ = ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎛ ⎞ ⎡ ⎤⎛ ⎞ Thus, we have ( ) 0 0 0 0 0 0 0 I cos( cos ) cos( )1 ( ) 2 sin sin jk r k h k heE j h r k h k hθ θωμ π θ − −⎛ ⎞≈ ⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠ Wire Antenna (cont.) fFor a resonant hal -wave dipole antenna 0 / 4 / 2 h k h λ= π θ⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥ 0 π= ( ) 0 0 0 cos cos I1 2( ) 2 / 2 sin jk reE j h rθ ωμ π π θ − ⎛ ⎞⎛ ⎞⎛ ⎞ ⎝ ⎠⎢ ⎥≈ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎣ ⎦ ( )/ 2, 1.643D π φ =The directivity is 3-dB beamwidth = 90° 3-dB beamwidth = 87° 3-dB beamwidth = 78° 3-dB beamwidth = 64° 3-dB beamwidth = 47.8 Wire Antenna (cont.) 21 The radiation resistance is defined from 0P I2rad rad R= +h z 2 0 2P I rad radR = Circuit ModelI (z)feed 2l h= Z0 Zin y in in inZ R jX= + in radR R= x -h For a resonant antenna (l ≈ λ0/2), Xin = 0. Wire Antenna (cont.) The radiation resistance is now evaluated. 2PradR = 2 0I rad This yields the result [ ]2 20 00 0 0 cos( cos ) cos( )1 2 sin( ) sinrad k h k h R d k h π θη θ π θ −⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ∫ λ /2 Di l 0h k hλ π [ ]73R Ω0 po e: 0,4 2= = rad ≈ Wire Antenna (cont.) The result can be extended to the case of a monopole antenna h 0 / 4h λ≈ Feeding coax 1 2 monopole dipole in inZ Z= [ ]36.5radR ≈ Ω
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved