Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Thermodynamics Problems: Energy Distribution and Entropy in Statistical Mechanics, Assignments of Thermal Physics

Solutions to selected problems from schroeder's 'introductory quantum mechanics' textbook, focusing on thermodynamics, energy distribution, and entropy in statistical mechanics. Topics include macrostates, energy levels, probability calculations, and the relationship between energy, temperature, and entropy.

Typology: Assignments

Pre 2010

Uploaded on 07/23/2009

koofers-user-dy5
koofers-user-dy5 ๐Ÿ‡บ๐Ÿ‡ธ

4

(1)

10 documents

1 / 4

Toggle sidebar

Related documents


Partial preview of the text

Download Thermodynamics Problems: Energy Distribution and Entropy in Statistical Mechanics and more Assignments Thermal Physics in PDF only on Docsity! 1ย  ย  Fall 2008 Phys 461 Solution Set 4 Schroeder 2.8 (a) Solid A can have anywhere between 0 and 20 units of energy. Therefore, 21 different macrostates are available to the system of weakly coupled A and B solids sharing 20 units of energy. (b) The combined system has 20 oscillators and 20 units of energy. Therefore 101089.6 !19!20 !39 )!1(! )!1(),( ร—= ร— = โˆ’ โˆ’+ =โ„ฆ Nq NqqN (c) For the macrostate with all energy in solid A, 7101 !9!20 !29)0,10()20,10( ร—= ร— =โ„ฆโ„ฆ=โ„ฆโ„ฆ=โ„ฆ BABA Probability of this macrostate is 410 7 1045.1 1089.6 101 โˆ’ร—= ร— ร— (d) For the macrostate with half the energy in A and half in B, 9 2 1053.8 !9!10 !19)10,10()10,10( ร—=โŽŸ โŽ  โŽž โŽœ โŽ โŽ› ร— =โ„ฆโ„ฆ=โ„ฆ BA Probability = 124.0 1089.6 1053.8 10 9 = ร— ร— (e) If the energy was initially all in A, the system would evolve toward half energy in A and half energy in B, and this distribution of energy would be irreversible. In other words, once the energy is evenly distributed, it is highly unlikely that the system would find itself with all the energy back in A. 2ย  ย  Schroeder 2.17 !! )!( )!1(! )1().( Nq qN Nq qNqN +โ‰ˆ โˆ’ โˆ’+ =โ„ฆ and NNqqqNqN lnln)ln()(ln โˆ’โˆ’++โ‰ˆโ„ฆ In the limit q << N N qN N qNqN +โ‰ˆโŽฅ โŽฆ โŽค โŽข โŽฃ โŽก โŽŸ โŽ  โŽž โŽœ โŽ โŽ› +โ‰ˆ+ ln1ln)ln( Therefore, q q NqNNqq N qqNqNN +โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› โ‰ˆโˆ’โˆ’+++โ‰ˆโ„ฆ lnlnlnlnlnln 2 where we have dropped the term Nq /2 . Exponentiate both sides to get q q q q eNe q Nq q Nq โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› =โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› =โŽฅ โŽฆ โŽค โŽข โŽฃ โŽก โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› =โ„ฆ )exp(lnexp Schroeder 2.27 The probability of finding any one gas molecule in the leftmost 99% of the container is 0.99. Therefore, the probability of finding all N molecules in the leftmost 99% of the container is (0.99)N. For N=100, (0.99)100 = 0.366 i.e. the probability that the rightmost 1% of the container will be empty is ~37% for N=100. For N=10,000, (0.99)10000 = 2.25ร—10โˆ’44. For N=1023, (0.99)N= 20104.410 ร—โˆ’ , which is an extremely small probability. Schroeder 3.5 From problem 2.17, q q eNqN โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› =โ„ฆ ),( for q << N The entropy [ ] [ ]qNkqqNekq q eNkqkS lnln1lnlnlnlnln โˆ’+=โˆ’+=โŽŸโŽŸ โŽ  โŽž โŽœโŽœ โŽ โŽ› =โ„ฆ=
Docsity logo



Copyright ยฉ 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved