Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions to Quantum Mechanics Problem PC2130 QM1, Exams of Quantum Mechanics

Solutions to various quantum mechanics problems, including calculations of probabilities of spin states and eigenvectors, as well as discussions on power series and schrödinger equation.

Typology: Exams

2012/2013

Uploaded on 02/20/2013

sadhwani
sadhwani 🇮🇳

4.5

(4)

29 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download Solutions to Quantum Mechanics Problem PC2130 QM1 and more Exams Quantum Mechanics in PDF only on Docsity! PC2130 QM1 0809 Solution 1. The statistical operator for an atom pointing in direction ~e is ρ = 1 + ~e 2 Prob(+n) = tr {|↑n〉〈↑n| ρ} = tr { 1 4 (1 + n · ~σ)(1 + e · ~σ) } = tr { 1 4 [1 + ~n · ~σ + ~e · ~σ + (~n · ~σ)(~e · ~σ)] } = tr { 1 4 [1 + ~n · ~σ + ~e · ~σ + ~n · ~e+ i(~n× ~e) · ~σ] } = 1 2 (1 + ~n · ~e) Similarly, Prob(−n) = tr {|↓n〉〈↓n| ρ} = tr { 1 4 (1− ~n · ~σ)(1− ~e · ~σ) } = 1 2 (1− ~n · ~e) 2. (a) If AA† = A†A = 0 and A|ai〉 = |ai〉ai, then (A− aiI)|ai〉 = 0 [〈ai|(A† − a∗i I)][(A− aiI)|ai〉] = 0 〈ai|(A†A− a∗iA− aiA† + a∗i ai)|ai〉 = 0 〈ai|(AA† − aiA† − a∗iA+ a∗i ai)|ai〉 = 0 [〈ai|(A− aiI)][(A† − a∗i I)|ai〉] = 0 which means that 〈ai|(A− aiI) = 0, or 〈ai| is an eigenbra of A with eigenvalue ai (b) Given A|a〉 = |a〉 and 〈b|A = b〈b| Taking inner product of the first equation with 〈b| and second equation with |a〉: 〈b|A|a〉 = a〈b|a〉 and 〈b|A|a〉 = b〈b|a〉 Subtracting the two, we get (a− b)〈b|a〉 = 0. Since b 6= a, 〈b|a〉 is 0. 3. (a) In term of power series, since we have (~n · ~σ)2 = 1 e(iθ~n·~σ) = 1 + (iθ~n · ~σ) + 1 2! (iθ~n · ~σ)2 + 1 3! (iθ~n · ~σ)3 + · · ·+ 1 n! (iθ~n · ~σ)n = ( 1− 1 2! θ2 + 1 4! θ4 + . . . ) + i ( θ − 1 3! θ3 + 1 5! θ5 + . . . ) (~n · ~σ) = cos θ + i sin θ(~n · ~σ) (b) With ~n = 1√ 3 (~x+ ~y + ~z) and θ = 2π3 e(i θ 2~n·~σ) = cos θ 2 + i sin θ 2 (~n · ~σ) = cos π 3 + i sin π 3 [ 1√ 3 (~σx + ~σy + ~σz) ] = 1 2 [1 + i(σx + σy + σz)] = 1 2 ( 1 + i 1 + i i− 1 1− i ) Acting on |↑z〉 1 2 ( 1 + i 1 + i i− 1 1− i )( 1 0 ) = 1 2 ( 1 + i i− 1 ) 1 4. Using 〈x|X = x〈x| and 〈x|P = −ih̄ ∂ ∂x 〈x| 〈x|XP = x〈x|P = −ih̄x ∂ ∂x 〈x| 〈x|PX = −ih̄ ∂ ∂x 〈x|X = −ih̄ ∂ ∂x 〈x|x = −ih̄x ∂ ∂x 〈x| − ih̄〈x| 〈x|[X,P ] = 〈x|XP − 〈x|PX = ih̄〈x| 5. For SHO, the Hamiltonian is H = P 2 2m + 1 2 mω2X2 E = 〈H〉 = 〈P 2〉 2m + 1 2 mω2〈X2〉 = δP 2 2m + 1 2 mω2δX2 = 1 2 ( δP 2 m + ω2δX2) ≥ √ ( δP 2 m )(ω2δX2) = √ δP 2δX2ω2 = 1 2 h̄ω 6. Using Schrödinger equation, − h̄ 2 2m d2ψ(x) dx2 − h̄ 2κ m δ(x)ψ(x) = Eψ(x) d2ψ(x) dx2 + 2κδ(x)ψ(x) = −2mE h̄2 ψ(x) Intergrate over a small region [−, ], dψ() dx − dψ(−) dx + 2κψ(0) = q2 ∫  − ψ(x)dx ≈ 2q2ψ(0) Let → 0 dψ(0+) dx − dψ(0−) dx + 2κψ(0) = 0 To the left and right of the origin, the potential term vanishes, and since the wavefunctions must vanish at infinity, ψ(x) = { Aeqx x < 0 Ae−qx x > 0 The following boundary condition must be satisfied: ψ(0+) = ψ(0−) dψ(x) dx ∣∣ 0+ − dψ(x) dx ∣∣ 0− + 2κψ(0) = 0 The first condition requires that A = B = ψ(0). The second condition gives −qψ(0)e−qx ∣∣∣ 0+ − qψ(0)eqx ∣∣∣ 0− + 2κψ(0) = 0 −qψ(0)− qψ(0) + 2κψ(0) = 0 2
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved