Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Atomic Mass, Significant Figures in Chemistry: Protons, Electrons, and Avogadro's Number, Study notes of Chemistry

Inorganic ChemistryAnalytical ChemistryPhysical ChemistryOrganic Chemistry

An in-depth explanation of atomic mass, significant figures, and related concepts such as Avogadro's number and the atomic mass unit. Students will learn about the mass of protons and electrons, the concept of significant figures, and how to apply these concepts to calculate the mass of a neutron and the number of hydrogen atoms in a gram. Additionally, the document covers conversion factors for atomic mass and the importance of Avogadro's number.

What you will learn

  • What is the mass of an electron?
  • What is the mass of a proton?
  • How many significant figures should we use when reporting measured values?
  • How many hydrogen atoms are there in a gram of hydrogen?
  • What is the atomic mass unit and how is it used?

Typology: Study notes

2021/2022

Uploaded on 09/12/2022

ambau
ambau 🇺🇸

4.5

(11)

7 documents

1 / 24

Toggle sidebar

Related documents


Partial preview of the text

Download Atomic Mass, Significant Figures in Chemistry: Protons, Electrons, and Avogadro's Number and more Study notes Chemistry in PDF only on Docsity! Atomic mass Avagadro’s number Chemistry 201 NC State University The mass of a proton The mass of a proton is: 1.6726231 × 10−27 kg or 1.6726231 × 10−24 grams We know this value accurately because of mass spectrometry. The number cited here has eight significant figures. We do not usually need this precision, so we often write the value as 1.67 × 10−24 grams to three significant figures. Example The mass of the electron is reported to be: 9.1093819 × 10-31 kg Write this number to three significant figures. Solution: The specified value should be as close as possible to the true value so we should round-off the last digit. In this case we round up to obtain 9.11 × 10-31 kg Example The mass of a neutron is approximately equal to sum of the masses of an electron and a proton. Give the neutron mass to three significant figures. Example The mass of a neutron is approximately equal to sum of the masses of an electron and a proton. Give the neutron mass to three significant figures. Solution: Start with the accurate values: 1.6726231 × 10−27 kg 9.1093819 × 10-31 kg Example The actual value of the neutron mass is: 1.6749286 × 10−27 kg Calculate the difference between the value you obtained by summing the proton and electron masses. How many significant figures are possible in your answer? Example The actual value of the neutron mass is: 1.6749286 × 10−27 kg Calculate the difference between the value you obtained by summing the proton and electron masses. How many significant figures are possible in your answer? Solution: Neutron 1.6749286 × 10−27 kg Proton + electron 1.6735340 × 10−27 kg Difference 1.3946 × 10−30 kg There are 5 significant figures in the answer. Conversion factors for atomic mass The sum of the mass of a proton and an electron is the mass of a hydrogen atom. Question: how many hydrogen atoms are there in a gram of H atoms (to 3 significant figures)? Avagadro’s number If we invert average atomic mass ___________1_____________ 1.6605388 × 10−24 grams/amu We obtained the number of particles with a given amu per gram. This number is called Avagradro’s number and is given the symbol NA. NA = 6.022141 × 1023 amu/gram This number gives the number of particles for which an atomic mass has the the same value in grams. 1 H atom = 1 amu NA H atoms = 1 gram 1 C atom = 12 amu NA C atoms = 12 grams Example How much does a molecule of pyridine weigh? (Ummm… all right, what is its mass?) Example How much does a molecule of pyridine weigh? Solution: First, we find the chemical formula for pyridine. C5H5N N H H H H H Avogadro’s number Instead, let’s ask how many molecules it takes to convert the atomic mass to its value in grams. For example, using the grams/amu conversion, let’s calculate how many hydrogen atoms have the mass of 1 gram. Avogadro’s number Instead, let’s ask how many molecules it takes to convert the atomic mass to its value in grams. For example, using the grams/amu conversion, let’s calculate how many hydrogen atoms have the mass of 1 gram. Answer: since hydrogen weighs 1 amu, its mass is 1.6605388 × 10−24 grams/atom We can invert this value to find the number of atoms per gram. 6.0221417 × 1023 atoms/gram The mole Since this number converts from atoms to gram for hydrogen, we can see that it can be used to give the number of atoms for any formula weight (i.e. molecular weight of a compound given in grams). For example, pyridine has a formula weight of 79 grams. Therefore, There are 6.0221417 × 1023 molecules in 79 grams of pyridine. Because of the importance of this number of atoms or molecules we give the name, mole. 1 mole = 6.0221417 × 1023 molecules or to 3 significant figures. 1 mole = 6.02 × 1023 molecules
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved