Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

calculus cheat sheet.pdf, Lecture notes of Calculus

( ) where ( ) is any anti-derivative of ( ), i.e, a function such that ' = . Applications: INTEGRALS.

Typology: Lecture notes

2021/2022

Uploaded on 08/05/2022

dirk88
dirk88 🇧🇪

4.5

(206)

3.2K documents

Partial preview of the text

Download calculus cheat sheet.pdf and more Lecture notes Calculus in PDF only on Docsity! PERIMETER, AREA & VOLUME Rectangle 𝑃𝑃 = 2𝑙𝑙 + 2𝑤𝑤 𝐴𝐴 = 𝑙𝑙𝑤𝑤 Square 𝑃𝑃 = 4𝑠𝑠 𝐴𝐴 = 𝑠𝑠2 Triangle P = add all sides A = 1 2 𝑏𝑏ℎ Parallelogram P= add all sides A = bh Trapezoid P = add all sides A= 1 2 (𝑏𝑏1 + 𝑏𝑏2)h Circle 𝐶𝐶 = 𝜋𝜋𝜋𝜋 = 2𝜋𝜋𝜋𝜋 𝐴𝐴 = 𝜋𝜋𝜋𝜋2 Arc Length S = 𝜃𝜃𝜋𝜋 in radians S= 𝜋𝜋 180 𝜃𝜃𝜋𝜋in degrees Circle Sector Area A = 𝜃𝜃 2 𝜋𝜋2 in radians A= 𝜃𝜃 360 𝜋𝜋𝜋𝜋2in degrees Rectangular solid S = 2𝑙𝑙𝑤𝑤 + 2𝑙𝑙ℎ + 2𝑤𝑤ℎ V = 𝑙𝑙𝑤𝑤ℎ Cube 𝑆𝑆𝐴𝐴 = 6𝑠𝑠2 V = s3 Cylinder 𝑆𝑆𝐴𝐴 = 2𝜋𝜋𝜋𝜋2 + 2𝜋𝜋𝜋𝜋ℎ 𝑉𝑉 = 𝜋𝜋𝜋𝜋2ℎ Cone 𝑆𝑆𝐴𝐴 = 𝜋𝜋𝜋𝜋𝑠𝑠 + 𝜋𝜋𝜋𝜋2 𝑉𝑉 = 1 3 𝜋𝜋𝜋𝜋2ℎ A = 𝜋𝜋𝜋𝜋√𝜋𝜋2 + ℎ2 Sphere SA = 4πr2 V = 4 3 πr3 A = 4𝜋𝜋𝜋𝜋2 Rectangle Pyramid SA = 𝑙𝑙𝑤𝑤 + 2𝑙𝑙𝑠𝑠 + 2𝑤𝑤𝑠𝑠 V = 1 3 𝑙𝑙𝑤𝑤ℎ EXPONENT LAWS 𝑥𝑥0 = 1 if x ≠ 0 𝑥𝑥1 = 𝑥𝑥 𝑥𝑥−𝑛𝑛 = 1 𝑥𝑥𝑛𝑛 if x ≠ 0 𝑥𝑥𝑚𝑚. 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚+𝑛𝑛 (𝑥𝑥𝑚𝑚)𝑛𝑛 = 𝑥𝑥𝑚𝑚.𝑛𝑛 𝑥𝑥𝑚𝑚 ÷ 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑚𝑚−𝑛𝑛 if x ≠0 (𝑥𝑥𝑥𝑥)𝑚𝑚 = 𝑥𝑥𝑚𝑚𝑥𝑥𝑚𝑚 �𝑥𝑥 𝑦𝑦 � 𝑛𝑛 = 𝑥𝑥𝑛𝑛 𝑦𝑦𝑛𝑛 if y ≠0 𝑥𝑥 𝑚𝑚 𝑛𝑛 = √𝑥𝑥𝑚𝑚𝑛𝑛 if (a ≥ 0, m ≥0, n>0) PROPERTIES OF LOGARITHMS 𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑥𝑥 ⇔ 𝑥𝑥 = 𝑎𝑎𝑦𝑦where a >0, a ≠ 0 𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑀𝑀 = 𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝒂𝒂(𝑀𝑀𝑀𝑀) = 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑀𝑀 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎N 𝑙𝑙𝑙𝑙𝑙𝑙𝒂𝒂 � 𝑀𝑀 𝑀𝑀 � = 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑀𝑀 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑀𝑀𝑥𝑥 = 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝒂𝒂𝑀𝑀 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏𝒂𝒂 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀 𝑙𝑙𝑙𝑙𝑙𝑙𝒂𝒂 = 𝑙𝑙𝑛𝑛𝑀𝑀 𝑙𝑙𝑛𝑛𝒂𝒂 SPECIAL PRODUCTS 𝑥𝑥2 − 𝑥𝑥2 = (𝑥𝑥 + 𝑥𝑥)(𝑥𝑥 − 𝑥𝑥) 𝑥𝑥3 ± 𝑥𝑥3 = (𝑥𝑥 ± 𝑥𝑥)(𝑥𝑥2 ∓ 𝑥𝑥𝑥𝑥 + 𝑥𝑥2) BINOMIAL THEOREM (𝑥𝑥 ± 𝑥𝑥)2 = 𝑥𝑥2 ± 2𝑥𝑥𝑥𝑥 + 𝑥𝑥2 (𝑥𝑥 ± 𝑥𝑥)3 = 𝑥𝑥3 ± 3𝑥𝑥2𝑥𝑥 + 3𝑥𝑥𝑥𝑥2 ± 𝑥𝑥3 (𝑥𝑥 + 𝑥𝑥)𝑛𝑛 = 𝑥𝑥𝑛𝑛 + 𝑛𝑛𝑥𝑥𝑛𝑛−1𝑥𝑥 + 𝑛𝑛(𝑛𝑛−1) 2 𝑥𝑥𝑛𝑛−2𝑥𝑥2 + … + �𝑛𝑛 𝑘𝑘� 𝑥𝑥𝑛𝑛−𝑘𝑘 + … + 𝑛𝑛𝑥𝑥𝑥𝑥𝑛𝑛−1 + 𝑥𝑥𝑛𝑛 where �𝑛𝑛 𝑘𝑘� = 𝑛𝑛(𝑛𝑛−1)…(𝑛𝑛−𝑘𝑘+1) 1•2•3•…•𝑘𝑘 PYTHAGOREAN THEOREM leg2+ leg2 = hypotenuse2 DISTANCE FORMULA 𝜋𝜋 = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑥𝑥2 − 𝑥𝑥1)2 sin𝛉𝛉 = 𝑙𝑙𝑜𝑜𝑜𝑜 ℎ𝑥𝑥𝑜𝑜 𝑐𝑐𝑙𝑙𝑠𝑠𝜽𝜽 = 𝑎𝑎𝜋𝜋𝑎𝑎 ℎ𝑥𝑥𝑜𝑜 𝑡𝑡𝑎𝑎𝑛𝑛𝜽𝜽 = 𝑙𝑙𝑜𝑜𝑜𝑜 𝑎𝑎𝜋𝜋𝑎𝑎 𝑐𝑐𝑙𝑙𝑡𝑡𝜽𝜽 = 𝑎𝑎𝜋𝜋𝑎𝑎 𝑙𝑙𝑜𝑜𝑜𝑜 𝑐𝑐𝑠𝑠𝑐𝑐𝜽𝜽 = ℎ𝑥𝑥𝑜𝑜 𝑙𝑙𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑐𝑐𝜽𝜽 = ℎ𝑥𝑥𝑜𝑜 𝑎𝑎𝜋𝜋𝑎𝑎 𝑡𝑡𝑎𝑎𝑛𝑛𝜽𝜽 = 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽 𝑐𝑐𝑙𝑙𝑠𝑠𝜽𝜽 𝑐𝑐𝑙𝑙𝑡𝑡𝜽𝜽 = 𝑐𝑐𝑙𝑙𝑠𝑠𝜽𝜽 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽 = 1 𝑐𝑐𝑠𝑠𝑐𝑐𝜽𝜽 𝑐𝑐𝑙𝑙𝑠𝑠𝜽𝜽 = 1 𝑠𝑠𝑠𝑠𝑐𝑐𝜽𝜽 𝑐𝑐𝑠𝑠𝑐𝑐𝜽𝜽 = 1 𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽 𝑠𝑠𝑠𝑠𝑐𝑐𝜽𝜽 = 1 𝑐𝑐𝑙𝑙𝑠𝑠𝜽𝜽 𝑡𝑡𝑎𝑎𝑛𝑛𝜽𝜽 = 1 𝑐𝑐𝑙𝑙𝑡𝑡𝜽𝜽 𝑐𝑐𝑙𝑙𝑡𝑡𝜽𝜽 = 1 𝑡𝑡𝑎𝑎𝑛𝑛𝜽𝜽 𝑠𝑠𝑠𝑠𝑛𝑛2𝜽𝜽 + 𝑐𝑐𝑙𝑙𝑠𝑠2𝜽𝜽 = 1 𝑡𝑡𝑎𝑎𝑛𝑛2𝜽𝜽 + 1 = 𝑠𝑠𝑠𝑠𝑐𝑐2𝜽𝜽 𝑐𝑐𝑙𝑙𝑡𝑡2𝜽𝜽 + 1 = 𝑐𝑐𝑠𝑠𝑐𝑐2𝜽𝜽 𝑠𝑠𝑠𝑠𝑛𝑛2𝜽𝜽 = 1 − 𝑐𝑐𝑙𝑙𝑠𝑠𝟐𝟐𝜽𝜽 2 𝑐𝑐𝑙𝑙𝑠𝑠2𝜽𝜽 = 1 + 𝑐𝑐𝑙𝑙𝑠𝑠𝟐𝟐𝜽𝜽 2 𝑡𝑡𝑎𝑎𝑛𝑛2𝜽𝜽 = 1 − 𝑐𝑐𝑙𝑙𝑠𝑠𝟐𝟐𝜽𝜽 1 + 𝑐𝑐𝑙𝑙𝑠𝑠𝟐𝟐𝜽𝜽 𝑠𝑠𝑠𝑠𝑛𝑛(𝟐𝟐𝜽𝜽) = 2𝑠𝑠𝑠𝑠𝑛𝑛𝜽𝜽𝑐𝑐𝑙𝑙𝑠𝑠𝜽𝜽 𝑐𝑐𝑙𝑙𝑠𝑠(𝟐𝟐𝜽𝜽) = 𝑐𝑐𝑙𝑙𝑠𝑠2𝜽𝜽 − 𝑠𝑠𝑠𝑠𝑛𝑛2𝜽𝜽 = 2𝑐𝑐𝑙𝑙𝑠𝑠2𝜽𝜽 − 1 = 1 − 2𝑠𝑠𝑠𝑠𝑛𝑛2𝜽𝜽 𝑡𝑡𝑎𝑎𝑛𝑛(𝟐𝟐𝜽𝜽) = 2𝑡𝑡𝑎𝑎𝑛𝑛𝜽𝜽 1 − 𝑡𝑡𝑎𝑎𝑛𝑛2𝜽𝜽 Law of Sines 𝑠𝑠𝑠𝑠𝑛𝑛𝜶𝜶 𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑛𝑛𝜷𝜷 𝑏𝑏 = 𝑠𝑠𝑠𝑠𝑛𝑛𝜸𝜸 𝑐𝑐 Law of Cosines 𝑎𝑎2 = 𝑏𝑏2 + 𝑐𝑐2 − 2𝑏𝑏𝑐𝑐𝒄𝒄𝒄𝒄𝒄𝒄𝜶𝜶 𝑏𝑏2 = 𝑎𝑎2 + 𝑐𝑐2 − 2𝑎𝑎𝑐𝑐𝒄𝒄𝒄𝒄𝒄𝒄𝜷𝜷 𝑐𝑐2 = 𝑎𝑎2 + 𝑏𝑏2 − 2𝑎𝑎𝑏𝑏𝒄𝒄𝒄𝒄𝒄𝒄𝜸𝜸 Sum and Difference 𝑠𝑠𝑠𝑠𝑛𝑛(𝜶𝜶 ± 𝜷𝜷) = 𝑠𝑠𝑠𝑠𝑛𝑛𝜶𝜶𝑐𝑐𝑙𝑙𝑠𝑠𝜷𝜷 ± 𝑐𝑐𝑙𝑙𝑠𝑠𝜶𝜶𝑠𝑠𝑠𝑠𝑛𝑛𝜷𝜷 𝑐𝑐𝑙𝑙𝑠𝑠(𝜶𝜶 ± 𝜷𝜷) = 𝑐𝑐𝑙𝑙𝑠𝑠𝜶𝜶𝑐𝑐𝑙𝑙𝑠𝑠𝜷𝜷 ∓ 𝑠𝑠𝑠𝑠𝑛𝑛𝜶𝜶𝑠𝑠𝑠𝑠𝑛𝑛𝜷𝜷 𝑡𝑡𝑎𝑎𝑛𝑛(𝜶𝜶 ± 𝜷𝜷) = 𝑡𝑡𝑎𝑎𝑛𝑛𝜶𝜶 ± 𝑡𝑡𝑎𝑎𝑛𝑛𝜷𝜷 1 ∓ 𝑡𝑡𝑎𝑎𝑛𝑛𝜶𝜶𝑡𝑡𝑎𝑎𝑛𝑛𝜷𝜷 Sum to Product 𝑠𝑠𝑠𝑠𝑛𝑛𝜶𝜶 + 𝑠𝑠𝑠𝑠𝑛𝑛𝜷𝜷 = 2𝑠𝑠𝑠𝑠𝑛𝑛 � 𝜶𝜶 + 𝜷𝜷 𝟐𝟐 � 𝑐𝑐𝑙𝑙𝑠𝑠 � 𝜶𝜶 − 𝜷𝜷 𝟐𝟐 � 𝑠𝑠𝑠𝑠𝑛𝑛𝜶𝜶 − 𝑠𝑠𝑠𝑠𝑛𝑛𝜷𝜷 = 2𝑐𝑐𝑙𝑙𝑠𝑠 � 𝜶𝜶 + 𝜷𝜷 𝟐𝟐 � 𝑠𝑠𝑠𝑠𝑛𝑛 � 𝜶𝜶 − 𝜷𝜷 𝟐𝟐 � 𝑐𝑐𝑙𝑙𝑠𝑠𝜶𝜶 + 𝑐𝑐𝑙𝑙𝑠𝑠𝜷𝜷 = 2𝑐𝑐𝑙𝑙𝑠𝑠 � 𝜶𝜶 + 𝜷𝜷 𝟐𝟐 � 𝑐𝑐𝑙𝑙𝑠𝑠 � 𝜶𝜶 − 𝜷𝜷 𝟐𝟐 � 𝑐𝑐𝑙𝑙𝑠𝑠𝜶𝜶 − 𝑐𝑐𝑙𝑙𝑠𝑠𝜷𝜷 = −2𝑠𝑠𝑠𝑠𝑛𝑛 � 𝜶𝜶 + 𝜷𝜷 𝟐𝟐 � 𝑠𝑠𝑠𝑠𝑛𝑛 � 𝜶𝜶 − 𝜷𝜷 𝟐𝟐 � Product to Sum 𝑠𝑠𝑠𝑠𝑛𝑛𝜶𝜶𝑠𝑠𝑠𝑠𝑛𝑛𝜷𝜷 = 𝑐𝑐𝑙𝑙𝑠𝑠(𝜶𝜶 − 𝜷𝜷) − 𝑐𝑐𝑙𝑙𝑠𝑠(𝜶𝜶 + 𝜷𝜷) 2 𝑐𝑐𝑙𝑙𝑠𝑠𝜶𝜶𝑐𝑐𝑙𝑙𝑠𝑠𝜷𝜷 = 𝑐𝑐𝑙𝑙𝑠𝑠(𝜶𝜶 − 𝜷𝜷) + 𝑐𝑐𝑙𝑙𝑠𝑠(𝜶𝜶 + 𝜷𝜷) 2 𝑠𝑠𝑠𝑠𝑛𝑛𝜶𝜶𝑐𝑐𝑙𝑙𝑠𝑠𝜷𝜷 = 𝑠𝑠𝑠𝑠𝑛𝑛(𝜶𝜶 + 𝜷𝜷) + 𝑠𝑠𝑠𝑠𝑛𝑛(𝜶𝜶 − 𝜷𝜷) 2 𝑐𝑐𝑙𝑙𝑠𝑠𝜶𝜶𝑠𝑠𝑠𝑠𝑛𝑛𝜷𝜷 = 𝑠𝑠𝑠𝑠𝑛𝑛(𝜶𝜶 + 𝜷𝜷) − 𝑠𝑠𝑠𝑠𝑛𝑛(𝜶𝜶 − 𝜷𝜷) 2 /ep2016 SANTA ANA COLLEGE 1530 West 17th Street, Santa Ana CA 92704 THE MATH CENTER www.sac.edu/MathCenter Room L-204 Phone: (714) 564-6678 OPERATIONAL HOURS Monday thru Thursday 9:00AM – 7:50PM Friday 10:00AM – 12:50PM Saturday 12:00PM – 4:00PM "Who has not been amazed to learn that the function𝑥𝑥 = 𝑠𝑠𝑥𝑥, like a phoenix rising from its own ashes, is its own derivative?" Francois le Lionnais DERIVATIVES Definition: Derivative: 𝑓𝑓′(𝑥𝑥) = ℎ→0 𝑙𝑙𝑙𝑙𝑚𝑚 𝑓𝑓(𝑥𝑥+ℎ)−𝑓𝑓(𝑥𝑥) ℎ if this limit exists. Applications: If 𝑥𝑥 = 𝑓𝑓(𝑥𝑥) then, • 𝑚𝑚 = 𝑓𝑓 ′(𝑎𝑎) is the slope of the tangent line to y=f(x) at x=a and the equation of the tangent line at 𝑥𝑥 = 𝑎𝑎 is given by 𝑥𝑥 = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓 ′(𝑎𝑎)(𝑥𝑥 − 𝑎𝑎). • 𝑓𝑓′(𝑎𝑎)is the instantaneous rate of change of 𝑓𝑓(𝑥𝑥)at 𝑥𝑥 = 𝑎𝑎. • If 𝑓𝑓(𝑥𝑥)is the position of an object at time 𝑥𝑥, then 𝑓𝑓 ′(𝑎𝑎) is the velocity of the object at 𝑥𝑥 = 𝑎𝑎 Critical points: 𝑥𝑥 = 𝑐𝑐 is the critical point of 𝑓𝑓(𝑥𝑥) = 𝑐𝑐 provided either 1. 𝑓𝑓 ′(𝑐𝑐) = 0 or 2. 𝑓𝑓 ′(𝑐𝑐) does not exist. Increasing/Decreasing • If 𝑓𝑓 ′(𝑥𝑥) > 0 for all x in an interval I, then f(x) is increasing on the interval I. • If 𝑓𝑓 ′(𝑥𝑥) < 0 for all x in an interval I, then f(x) is decreasing on the interval I. • If 𝑓𝑓 ′ (𝑥𝑥) = 0 for all x in an interval I, then f(x) is constant on the interval I. Concavity • If 𝑓𝑓 ′′(𝑥𝑥) > 0 for all x in an interval I, then f(x) is concave up on the interval I. • If 𝑓𝑓 ′′(𝑥𝑥) < 0 for all x in an interval I, then f(x) is concave down on the interval I. Inflection Points 𝑥𝑥 = 𝑐𝑐 is an inflection point of f(x)if the concavity changes at 𝑥𝑥 = 𝑐𝑐. COMMON DERIVATIVES 1) 𝑐𝑐’ = 0 2) [𝑓𝑓(𝑥𝑥) + 𝑙𝑙(𝑥𝑥)]’ = 𝑓𝑓’(𝑥𝑥) + 𝑙𝑙’(𝑥𝑥) 3) [𝑓𝑓(𝑥𝑥)𝑙𝑙(𝑥𝑥)]’ = 𝑓𝑓(𝑥𝑥)𝑙𝑙’(𝑥𝑥) + 𝑓𝑓’(𝑥𝑥)𝑙𝑙(𝑥𝑥) 4) [𝑓𝑓(𝑙𝑙(𝑥𝑥))]’ = 𝑓𝑓’(𝑙𝑙(𝑥𝑥))𝑙𝑙’(𝑥𝑥) 5) [𝑐𝑐𝑓𝑓(𝑥𝑥)]’ = 𝑐𝑐𝑓𝑓’(𝑥𝑥) 6) [𝑓𝑓(𝑥𝑥) – 𝑙𝑙(𝑥𝑥)]’ = 𝑓𝑓’(𝑥𝑥) – 𝑙𝑙’(𝑥𝑥) 7) �𝑓𝑓(𝑥𝑥) 𝑙𝑙(𝑥𝑥) � ′ = 𝑙𝑙(𝑥𝑥)𝑓𝑓′(𝑥𝑥)− 𝑓𝑓(𝑥𝑥)𝑙𝑙′(𝑥𝑥) [𝑙𝑙(𝑥𝑥)]2 8) (𝑥𝑥𝑛𝑛)′ = 𝑛𝑛𝑥𝑥𝑛𝑛−1 9) [𝑠𝑠𝑥𝑥]′ = 𝑠𝑠𝑥𝑥 10) [𝑎𝑎𝑥𝑥]′ = 𝑎𝑎𝑥𝑥𝑙𝑙𝑛𝑛𝒂𝒂 11) [𝑙𝑙𝑛𝑛|𝒙𝒙|]′ = 1 𝑥𝑥 12) [𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝒙𝒙]′ = 1 𝑥𝑥𝑙𝑙𝑛𝑛𝒂𝒂 13) (𝑠𝑠𝑠𝑠𝑛𝑛𝒙𝒙)′ = cos𝒙𝒙 14) (𝑐𝑐𝑙𝑙𝑠𝑠𝒙𝒙)′ = −𝑠𝑠𝑠𝑠𝑛𝑛𝒙𝒙 15) (𝑡𝑡𝑎𝑎𝑛𝑛𝒙𝒙) ′ = 𝑠𝑠𝑠𝑠𝑐𝑐2𝒙𝒙 16) (𝑐𝑐𝑙𝑙𝑡𝑡𝒙𝒙)′ = −𝑐𝑐𝑠𝑠𝑐𝑐2𝒙𝒙 17) (𝑠𝑠𝑠𝑠𝑐𝑐𝒙𝒙)′ = 𝑠𝑠𝑠𝑠𝑐𝑐𝒙𝒙𝑡𝑡𝑎𝑎𝑛𝑛𝒙𝒙 18) (𝑐𝑐𝑠𝑠𝑐𝑐𝒙𝒙)′ = −𝑐𝑐𝑠𝑠𝑐𝑐𝒙𝒙𝑐𝑐𝑙𝑙𝑡𝑡𝒙𝒙 19) (𝑠𝑠𝑠𝑠𝑛𝑛−1 𝒙𝒙)′ = 1 √1−𝑥𝑥2 20) (𝑐𝑐𝑙𝑙𝑠𝑠−1 𝒙𝒙) ′ = − 1 √1−𝑥𝑥2 21) (𝑡𝑡𝑎𝑎𝑛𝑛−1 𝒙𝒙)′ = 1 1+𝑥𝑥2 22) (𝑐𝑐𝑙𝑙𝑡𝑡−1 𝒙𝒙) ′ = − 1 1+𝑥𝑥2 23) (𝑠𝑠𝑠𝑠𝑐𝑐−1 𝒙𝒙)′ = 1 |𝑥𝑥|√𝑥𝑥2−1 24) (𝑐𝑐𝑠𝑠𝑐𝑐−1 𝒙𝒙)′ = − 1 |𝑥𝑥|�𝑥𝑥2−1 25) (𝑠𝑠𝑠𝑠𝑛𝑛ℎ𝒙𝒙)′ = cosh𝒙𝒙 26) (𝑐𝑐𝑙𝑙𝑠𝑠ℎ𝒙𝒙)′ = 𝑠𝑠𝑠𝑠𝑛𝑛ℎ𝒙𝒙 27) (𝑡𝑡𝑎𝑎𝑛𝑛ℎ𝒙𝒙) ′ = 𝑠𝑠𝑠𝑠𝑐𝑐ℎ2𝒙𝒙 28) (𝑐𝑐𝑙𝑙𝑡𝑡ℎ𝒙𝒙)′ = −𝑐𝑐𝑠𝑠𝑐𝑐ℎ2𝒙𝒙 29) (𝑠𝑠𝑠𝑠𝑐𝑐ℎ𝒙𝒙)′ = −𝑠𝑠𝑠𝑠𝑐𝑐ℎ𝒙𝒙𝑡𝑡𝑎𝑎𝑛𝑛ℎ𝒙𝒙 30) (𝑐𝑐𝑠𝑠𝑐𝑐𝒙𝒙)′ = −𝑐𝑐𝑠𝑠𝑐𝑐ℎ𝒙𝒙𝑐𝑐𝑙𝑙𝑡𝑡ℎ𝒙𝒙 31) (𝑠𝑠𝑠𝑠𝑛𝑛ℎ−1 𝒙𝒙)′ = 1 √1+𝑥𝑥2 32) (𝑐𝑐𝑙𝑙𝑠𝑠ℎ−1 𝒙𝒙)′ = 1 √𝑥𝑥2−1 33) (𝑡𝑡𝑎𝑎𝑛𝑛ℎ−1 𝒙𝒙)′ = 1 1−𝑥𝑥2 34) (𝑐𝑐𝑙𝑙𝑡𝑡ℎ−1 𝒙𝒙)′ = 1 1−𝑥𝑥2 35) (𝑠𝑠𝑠𝑠𝑐𝑐ℎ−1 𝒙𝒙)′ = − 1 |𝑥𝑥|√1−𝑥𝑥2 36) (𝑐𝑐𝑠𝑠𝑐𝑐ℎ−1 𝒙𝒙)′ = − 1 |𝑥𝑥|�𝑥𝑥2+1 INTEGRATION Definition: Suppose 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏]. Divide [𝑎𝑎, 𝑏𝑏] into n subintervals of width ∆𝑥𝑥 and choose 𝑥𝑥𝑙𝑙 ∗ from each interval. Then � 𝑓𝑓(𝑥𝑥)𝜋𝜋𝑥𝑥 𝑏𝑏 𝑎𝑎 = lim 𝑛𝑛→∞ � 𝑓𝑓(𝑥𝑥𝑙𝑙 ∗ ∞ 𝑙𝑙=1 )∆𝑥𝑥 where ∆𝑥𝑥 = (𝑏𝑏−𝑎𝑎) 𝑛𝑛 Fundamental Theorem of Calculus: Suppose 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏], then Part I: 𝑙𝑙(𝑥𝑥) =∫ 𝑓𝑓(𝑡𝑡)𝜋𝜋𝑡𝑡𝑥𝑥 𝑎𝑎 is also continuous on [𝑎𝑎, 𝑏𝑏] and 𝑙𝑙′(𝑥𝑥) = 𝑑𝑑 𝑑𝑑𝑥𝑥 ∫ 𝑓𝑓(𝑡𝑡)𝜋𝜋𝑡𝑡 = 𝑓𝑓(𝑥𝑥)𝑥𝑥 𝑎𝑎 where 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏. Part II: 𝑑𝑑 𝑑𝑑𝑥𝑥 ∫ 𝑓𝑓(𝑥𝑥)𝜋𝜋𝑥𝑥 = 𝐹𝐹(𝑏𝑏)𝑏𝑏 𝑎𝑎 − 𝐹𝐹(𝑎𝑎) where 𝐹𝐹(𝑥𝑥) is any anti-derivative of 𝑓𝑓(𝑥𝑥), i.e, a function such that 𝐹𝐹’ = 𝑓𝑓. Applications: INTEGRALS 1) ∫ 𝑢𝑢𝑛𝑛𝜋𝜋𝑢𝑢 = 𝑢𝑢𝑛𝑛+1 𝑛𝑛+1 + 𝑐𝑐, 𝑛𝑛 ≠ −1 2) ∫ 𝑑𝑑𝑢𝑢 𝑢𝑢 = 𝑙𝑙𝑛𝑛|𝒖𝒖| + 𝑐𝑐 3) ∫ 𝑠𝑠𝑢𝑢𝜋𝜋𝑢𝑢 = 𝑠𝑠𝑢𝑢 + 𝑐𝑐 4) ∫ 𝑎𝑎𝑢𝑢𝜋𝜋𝑢𝑢 = 𝑎𝑎𝑢𝑢 𝑙𝑙𝑛𝑛𝒂𝒂 + c 5) ∫ 𝑙𝑙𝑛𝑛𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑢𝑢𝑙𝑙𝑛𝑛𝒖𝒖 − 𝑢𝑢 + 𝑐𝑐 6) ∫ 1 𝑢𝑢𝑙𝑙𝑛𝑛𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛|𝑙𝑙𝑛𝑛𝒖𝒖| + 𝑐𝑐 7) ∫ 𝑠𝑠𝑠𝑠𝑛𝑛𝒖𝒖 𝜋𝜋𝑢𝑢 = −𝑐𝑐𝑙𝑙𝑠𝑠𝒖𝒖 + 𝑐𝑐 8) ∫ 𝑐𝑐𝑙𝑙𝑠𝑠𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑛𝑛𝒖𝒖 + 𝑐𝑐 9) ∫ 𝑡𝑡𝑎𝑎𝑛𝑛𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛|𝑠𝑠𝑠𝑠𝑐𝑐𝒖𝒖| + 𝑐𝑐 10) ∫ 𝑐𝑐𝑙𝑙𝑡𝑡𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛|𝑠𝑠𝑠𝑠𝑛𝑛𝒖𝒖| + 𝑐𝑐 11) ∫ 𝑠𝑠𝑠𝑠𝑐𝑐𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛|𝑠𝑠𝑠𝑠𝑐𝑐𝒖𝒖 + 𝑡𝑡𝑎𝑎𝑛𝑛𝒖𝒖| + 𝑐𝑐 12) ∫ 𝑐𝑐𝑠𝑠𝑐𝑐𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛|𝑐𝑐𝑠𝑠𝑐𝑐𝒖𝒖 − 𝑐𝑐𝑙𝑙𝑡𝑡𝒖𝒖| + 𝑐𝑐 13) ∫ 𝑠𝑠𝑠𝑠𝑐𝑐2𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑡𝑡𝑎𝑎𝑛𝑛 𝒖𝒖 + 𝑐𝑐 14) ∫ 𝑐𝑐𝑠𝑠𝑐𝑐2𝒖𝒖 𝜋𝜋𝑢𝑢 = −𝑐𝑐𝑙𝑙𝑡𝑡𝒖𝒖 + 𝑐𝑐 15) ∫ 𝑠𝑠𝑠𝑠𝑐𝑐𝒖𝒖 𝑡𝑡𝑎𝑎𝑛𝑛𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑐𝑐𝒖𝒖 + 𝑐𝑐 16) ∫ 𝑐𝑐𝑠𝑠𝑐𝑐𝒖𝒖 𝑐𝑐𝑙𝑙𝑡𝑡𝒖𝒖 𝜋𝜋𝑢𝑢 = −𝑐𝑐𝑠𝑠𝑐𝑐𝒖𝒖 + 𝑐𝑐 17) ∫ 𝑑𝑑𝑢𝑢 √𝑎𝑎2−𝑢𝑢2 = 𝑠𝑠𝑠𝑠𝑛𝑛−1 𝒖𝒖 𝒂𝒂 + 𝑐𝑐, 𝑎𝑎 > 0 18) ∫ 𝑑𝑑𝑢𝑢 𝑎𝑎2+𝑢𝑢2 = 1 𝑎𝑎 𝑡𝑡𝑎𝑎𝑛𝑛−1 𝒖𝒖 𝒂𝒂 + 𝑐𝑐 19) ∫ 𝑑𝑑𝑢𝑢 𝑢𝑢√𝑢𝑢2−𝑎𝑎2 = 1 𝑎𝑎 𝑠𝑠𝑠𝑠𝑐𝑐−1 𝒖𝒖 𝒂𝒂 + 𝑐𝑐 20) ∫ 𝑑𝑑𝑢𝑢 𝒂𝒂𝟐𝟐−𝒖𝒖𝟐𝟐 = 1 2𝑎𝑎 𝑙𝑙𝑛𝑛 �𝒖𝒖+𝒂𝒂 𝒖𝒖−𝒂𝒂 �+c 21) ∫ 𝑑𝑑𝑢𝑢 𝒖𝒖𝟐𝟐−𝒂𝒂𝟐𝟐 = 1 2𝑎𝑎 𝑙𝑙𝑛𝑛 �𝒖𝒖−𝒂𝒂 𝒖𝒖+𝒂𝒂 �+c 22) ∫ 𝑠𝑠𝑠𝑠𝑛𝑛−1 𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑢𝑢 𝑠𝑠𝑠𝑠𝑛𝑛−1 𝒖𝒖 + √1 − 𝑢𝑢2 + 𝑐𝑐 23) ∫ 𝑐𝑐𝑙𝑙𝑠𝑠−1 𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑢𝑢 𝑐𝑐𝑙𝑙𝑠𝑠−1 𝒖𝒖 + √1 − 𝑢𝑢2 + 𝑐𝑐 24) ∫ 𝑡𝑡𝑎𝑎𝑛𝑛−1 𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑢𝑢 tan−1 𝒖𝒖 − 1 2 ln(1 + 𝑢𝑢2) + 𝑐𝑐 25) ∫ 𝑠𝑠𝑠𝑠𝑛𝑛ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑐𝑐𝑙𝑙𝑠𝑠ℎ𝒖𝒖 + 𝑐𝑐 26) ∫ 𝑐𝑐𝑙𝑙𝑠𝑠ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑛𝑛ℎ𝒖𝒖 + 𝑐𝑐 27) ∫ 𝑡𝑡𝑎𝑎𝑛𝑛ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛 (𝑐𝑐𝑙𝑙𝑠𝑠ℎ𝒖𝒖) + 𝑐𝑐 28) ∫ 𝑐𝑐𝑙𝑙𝑡𝑡ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛|𝑠𝑠𝑠𝑠𝑛𝑛ℎ𝒖𝒖| + 𝑐𝑐 29) ∫ 𝑠𝑠𝑠𝑠𝑐𝑐ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑡𝑡𝑎𝑎𝑛𝑛−1|𝑠𝑠𝑠𝑠𝑛𝑛ℎ𝒖𝒖| + 𝑐𝑐 30) ∫ 𝑐𝑐𝑠𝑠𝑐𝑐ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑙𝑙𝑛𝑛 �𝑡𝑡𝑎𝑎𝑛𝑛ℎ 1 2 𝒖𝒖� + 𝑐𝑐 31) ∫ 𝑠𝑠𝑠𝑠𝑐𝑐ℎ2𝒖𝒖 𝜋𝜋𝑢𝑢 = 𝑡𝑡𝑎𝑎𝑛𝑛ℎ 𝒖𝒖 + 𝑐𝑐 32) ∫ 𝑐𝑐𝑠𝑠𝑐𝑐ℎ2𝒖𝒖 𝜋𝜋𝑢𝑢 = −𝑐𝑐𝑙𝑙𝑡𝑡ℎ𝒖𝒖 + 𝑐𝑐 33) ∫ 𝑠𝑠𝑠𝑠𝑐𝑐ℎ𝒖𝒖 𝑡𝑡𝑎𝑎𝑛𝑛ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = −𝑠𝑠𝑠𝑠𝑐𝑐ℎ𝒖𝒖 + 𝑐𝑐 34) ∫ 𝑐𝑐𝑠𝑠𝑐𝑐ℎ𝒖𝒖 𝑐𝑐𝑙𝑙𝑡𝑡ℎ𝒖𝒖 𝜋𝜋𝑢𝑢 = −𝑐𝑐𝑠𝑠𝑐𝑐ℎ𝒖𝒖 + 𝑐𝑐 35) ∫ 𝑢𝑢𝜋𝜋𝑢𝑢 = 𝑢𝑢𝑢𝑢 − ∫ 𝑢𝑢𝜋𝜋𝑢𝑢 Area: 𝐴𝐴 = ∫ 𝑓𝑓(𝑥𝑥)𝜋𝜋𝑥𝑥𝑏𝑏 𝑎𝑎 Area between Curves: • 𝑥𝑥 = 𝑓𝑓(𝑥𝑥); 𝐴𝐴 = ∫ (𝑢𝑢𝑜𝑜𝑜𝑜𝑠𝑠𝜋𝜋 − 𝑙𝑙𝑙𝑙𝑤𝑤𝑠𝑠𝜋𝜋 𝑓𝑓𝑢𝑢𝑛𝑛𝑡𝑡𝑠𝑠𝑙𝑙𝑛𝑛)𝜋𝜋𝑥𝑥𝑏𝑏 𝑎𝑎 • 𝑥𝑥 = 𝑓𝑓(𝑥𝑥); 𝐴𝐴 = ∫ (𝜋𝜋𝑠𝑠𝑙𝑙ℎ𝑡𝑡 − 𝑙𝑙𝑠𝑠𝑓𝑓𝑡𝑡 𝑓𝑓𝑢𝑢𝑛𝑛𝑡𝑡𝑠𝑠𝑙𝑙𝑛𝑛) 𝜋𝜋𝑥𝑥𝑏𝑏 𝑎𝑎 Volumes: V= ∫ 𝐴𝐴𝜋𝜋𝑠𝑠𝑎𝑎(𝑥𝑥) 𝜋𝜋𝑥𝑥𝑏𝑏 𝑎𝑎 Volume of Revolution Rings V= ∫ 2𝜋𝜋(𝑙𝑙𝑢𝑢𝑡𝑡𝑠𝑠𝜋𝜋 𝜋𝜋2 − 𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝜋𝜋 𝜋𝜋2)𝑏𝑏 𝑎𝑎 Cylinders V= ∫ 𝑐𝑐𝑠𝑠𝜋𝜋𝑐𝑐𝑢𝑢𝑚𝑚𝑓𝑓𝑠𝑠𝜋𝜋𝑠𝑠𝑛𝑛𝑐𝑐𝑠𝑠 ∙ ℎ𝑠𝑠𝑠𝑠𝑙𝑙ℎ𝑡𝑡 ∙ 𝑡𝑡ℎ𝑠𝑠𝑐𝑐𝑘𝑘𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑏𝑏 𝑎𝑎 Work: If a force of 𝐹𝐹(𝑥𝑥) moves an object in 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, then the work done is W=∫ 𝐹𝐹(𝑥𝑥)𝜋𝜋𝑥𝑥𝑏𝑏 𝑎𝑎 Average Function Value: The average value of 𝑓𝑓(𝑥𝑥) on 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 is𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎 = 1 𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓(𝑥𝑥)𝜋𝜋𝑥𝑥𝑏𝑏 𝑎𝑎 “Success is the sum of small efforts, repeated day in and day out.” Robert Collier “Go down deep enough into anything and you will find mathematics.” Dean Schlicter
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved