Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Chapter 05-Electrical Circuit Analysis-Problem Solutions, Exercises of Electrical Circuit Analysis

This is solution to problems related Electrical Circuit Analysis course. It was given by Prof. Gurnam Kanth at Punjab Engineering College. Its main points are: Equivalent, Model, Input, Resistance, Loop, Gain, Terminal, Op-amp, Voltage, KCL

Typology: Exercises

2011/2012

Uploaded on 07/20/2012

anumati
anumati 🇮🇳

4.4

(100)

111 documents

1 / 7

Toggle sidebar

Related documents


Partial preview of the text

Download Chapter 05-Electrical Circuit Analysis-Problem Solutions and more Exercises Electrical Circuit Analysis in PDF only on Docsity! Chapter 5, Problem 1. The equivalent model of a certain op amp is shown in Fig. 5.43. Determine: (a) the input resistance. (b) the output resistance. (c) the voltage gain in dB. Figure 5.43 for Prob. 5.1 8x104vd Chapter 5, Solution 1. (a) Rin = 1.5 MΩ (b) Rout = 60 Ω (c) A = 8x104 Therefore AdB = 20 log 8x104 = 98.0 dB Chapter 5, Problem 2 The open-loop gain of an op amp is 100,000. Calculate the output voltage when there are inputs of +10 µV on the inverting terminal and + 20 µV on the noninverting terminal. Chapter 5, Solution 2. v0 = Avd = A(v2 - v1) = 105 (20-10) x 10-6 = 1V docsity.com Chapter 5, Problem 3 Determine the output voltage when .20 µV is applied to the inverting terminal of an op amp and +30 µV to its noninverting terminal. Assume that the op amp has an open-loop gain of 200,000. Chapter 5, Solution 3. v0 = Avd = A(v2 - v1) = 2 x 105 (30 + 20) x 10-6 = 10V Chapter 5, Problem 4 The output voltage of an op amp is .4 V when the noninverting input is 1 mV. If the open-loop gain of the op amp is 2 × 106, what is the inverting input? Chapter 5, Solution 4. v0 = Avd = A(v2 - v1) v2 - v1 = V2 10x2 4 A v 6 0 μ−= − = v2 - v1 = -2 µV = –0.002 mV 1 mV - v1 = -0.002 mV v1 = 1.002 mV docsity.com Chapter 5, Problem 6 Using the same parameters for the 741 op amp in Example 5.1, find vo in the op amp circuit of Fig. 5.45. Figure 5.45 for Prob. 5.6 Example 5.1 A 741 op amp has an open-loop voltage gain of 2×105, input resistance of 2 MΩ, and output resistance of 50Ω. The op amp is used in the circuit of Fig. 5.6(a). Find the closed- loop gain vo/vs . Determine current i when vs = 2 V. docsity.com Chapter 5, Solution 6. + - Avd -+ vi I Rin R0 + vo - - vd + (R0 + Ri)R + vi + Avd = 0 But vd = RiI, vi + (R0 + Ri + RiA)I = 0 I = i0 i R)A1(R v ++ − (1) -Avd - R0I + vo = 0 vo = Avd + R0I = (R0 + RiA)I Substituting for I in (1), v0 = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ++ + − i0 i0 R)A1(R ARR vi = ( )( ) 65 356 10x2x10x2150 1010x2x10x250 ++ ⋅+ − − ≅ mV 10x2x001,200 10x2x000,200 6 6− v0 = -0.999995 mV docsity.com Chapter 5, Problem 7 The op amp in Fig. 5.46 has Ri = 100 kΩ, Ro = 100 Ω, A = 100,000. Find the differential voltage vd and the output voltage vo. + – Figure 5.46 for Prob. 5.7 docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved