Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Chapter 08-Electrical Circuit Analysis-Problem Solutions, Exercises of Electrical Circuit Analysis

This is solution to problems related Electrical Circuit Analysis course. It was given by Prof. Gurnam Kanth at Punjab Engineering College. Its main points are: Steady, State, Equivalent, Circuit, KVL, Equivalent, KCL, Solution, Node, KVL, Mesh

Typology: Exercises

2011/2012
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 07/20/2012

anumati
anumati 🇮🇳

4.4

(100)

111 documents

1 / 14

Toggle sidebar
Discount

On special offer

Related documents


Partial preview of the text

Download Chapter 08-Electrical Circuit Analysis-Problem Solutions and more Exercises Electrical Circuit Analysis in PDF only on Docsity! Chapter 8, Problem 1. For the circuit in Fig. 8.62, find: (a) 0i and 0v , (b) dtdi /0 and dtdv /0 , (c) i and v . Figure 8.62 For Prob. 8.1. docsity.com Chapter 8, Solution 1. (a) At t = 0-, the circuit has reached steady state so that the equivalent circuit is shown in Figure (a). i(0-) = 12/6 = 2A, v(0-) = 12V At t = 0+, i(0+) = i(0-) = 2A, v(0+) = v(0-) = 12V (b) For t > 0, we have the equivalent circuit shown in Figure (b). vL = Ldi/dt or di/dt = vL/L Applying KVL at t = 0+, we obtain, vL(0+) – v(0+) + 10i(0+) = 0 vL(0+) – 12 + 20 = 0, or vL(0+) = -8 Hence, di(0+)/dt = -8/2 = -4 A/s Similarly, iC = Cdv/dt, or dv/dt = iC/C iC(0+) = -i(0+) = -2 dv(0+)/dt = -2/0.4 = -5 V/s (c) As t approaches infinity, the circuit reaches steady state. i( ) = 0 A, v( ) = 0 V VS + 6 (a) (b) + v 10 H 10 F 6 6 + vL docsity.com Chapter 8, Problem 3. Refer to the circuit shown in Fig. 8.64. Calculate: (a) 0 L i , 0 c v and 0 R v , (b) dtdi L /0 , dtdv c /0 , and dtdv R /0 , (c) L i , c v and R v Figure 8.64 For Prob. 8.3. Chapter 8, Solution 3. At t = 0 - , u(t) = 0. Consider the circuit shown in Figure (a). iL(0 - ) = 0, and vR(0 - ) = 0. But, -vR(0 - ) + vC(0 - ) + 10 = 0, or vC(0 - ) = -10V. (a) At t = 0 + , since the inductor current and capacitor voltage cannot change abruptly, the inductor current must still be equal to 0A, the capacitor has a voltage equal to –10V. Since it is in series with the +10V source, together they represent a direct short at t = 0 + . This means that the entire 2A from the current source flows through the capacitor and not the resistor. Therefore, vR(0 + ) = 0 V. docsity.com (b) At t = 0 + , vL(0+) = 0, therefore LdiL(0+)/dt = vL(0 + ) = 0, thus, diL/dt = 0A/s, iC(0 + ) = 2 A, this means that dvC(0 + )/dt = 2/C = 8 V/s. Now for the value of dvR(0 + )/dt. Since vR = vC + 10, then dvR(0 + )/dt = dvC(0 + )/dt + 0 = 8 V/s. (c) As t approaches infinity, we end up with the equivalent circuit shown in Figure (b). iL( ) = 10(2)/(40 + 10) = 400 mA vC( ) = 2[10||40] –10 = 16 – 10 = 6V vR( ) = 2[10||40] = 16 V 40 10 (a) + vC 10V + + vR + vR iL 2A 40 10 (b) + vC 10V + docsity.com Chapter 8, Problem 4. In the circuit of Fig. 8.65, find: (a) 0v and 0i , (b) dtdv /0 and dtdi /0 , (c) v and i . Figure 8.65 For Prob. 8.4. Chapter 8, Solution 4. (a) At t = 0 - , u(-t) = 1 and u(t) = 0 so that the equivalent circuit is shown in Figure (a). i(0 - ) = 40/(3 + 5) = 5A, and v(0 - ) = 5i(0 - ) = 25V. Hence, i(0 + ) = i(0 - ) = 5A v(0 + ) = v(0 - ) = 25V 3 5 (a) i + v 40V + 4 A 0.1F 3 5 (b) i + vL 40V + 0.25 H iC iR docsity.com Chapter 8, Solution 5. (a) For t < 0, 4u(t) = 0 so that the circuit is not active (all initial conditions = 0). iL(0-) = 0 and vC(0-) = 0. For t = 0+, 4u(t) = 4. Consider the circuit below. Since the 4-ohm resistor is in parallel with the capacitor, i(0+) = vC(0+)/4 = 0/4 = 0 A Also, since the 6-ohm resistor is in series with the inductor, v(0+) = 6iL(0+) = 0V. (b) di(0+)/dt = d(vR(0+)/R)/dt = (1/R)dvR(0+)/dt = (1/R)dvC(0+)/dt = (1/4)4/0.25 A/s = 4 A/s v = 6iL or dv/dt = 6diL/dt and dv(0+)/dt = 6diL(0+)/dt = 6vL(0+)/L = 0 Therefore dv(0+)/dt = 0 V/s (c) As t approaches infinity, the circuit is in steady-state. i( ) = 6(4)/10 = 2.4 A v( ) = 6(4 – 2.4) = 9.6 V 6 i A + vC 0.25F 4A 4 + v 1 H + vL iC iL docsity.com Chapter 8, Problem 6. In the circuit of Fig. 8.67, find: (a) 0 R v and 0 L v , (b) dtdv R /0 and dtdv L /0 , (c) R v and L v , Figure 8.67 For Prob. 8.6. docsity.com Chapter 8, Solution 6. (a) Let i = the inductor current. For t < 0, u(t) = 0 so that i(0) = 0 and v(0) = 0. For t > 0, u(t) = 1. Since, v(0+) = v(0-) = 0, and i(0+) = i(0-) = 0. vR(0+) = Ri(0+) = 0 V Also, since v(0+) = vR(0+) + vL(0+) = 0 = 0 + vL(0+) or vL(0+) = 0 V. (1) (b) Since i(0+) = 0, iC(0+) = VS/RS But, iC = Cdv/dt which leads to dv(0+)/dt = VS/(CRS) (2) From (1), dv(0+)/dt = dvR(0+)/dt + dvL(0+)/dt (3) vR = iR or dvR/dt = Rdi/dt (4) But, vL = Ldi/dt, vL(0+) = 0 = Ldi(0+)/dt and di(0+)/dt = 0 (5) From (4) and (5), dvR(0+)/dt = 0 V/s From (2) and (3), dvL(0+)/dt = dv(0+)/dt = Vs/(CRs) (c) As t approaches infinity, the capacitor acts like an open circuit, while the inductor acts like a short circuit. vR( ) = [R/(R + Rs)]Vs vL( ) = 0 V docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved