Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Cheat sheet_Basic calculus-1.pdf, Cheat Sheet of Calculus

Cheat sheet_Basic calculus-1.pdf

Typology: Cheat Sheet

2022/2023

Uploaded on 01/25/2024

anzkro
anzkro 🇸🇪

1 document

Partial preview of the text

Download Cheat sheet_Basic calculus-1.pdf and more Cheat Sheet Calculus in PDF only on Docsity! CHEATSHEET CALCULUS The square-, conjugate- and binomial formulas The binomial coeffients ( n k ) = n! k!(n− k)! n! = { 1, n = 0 1 · 2 · 3 · · · · n, n = 1, 2, . . . (a+ b)2 = a2 + 2ab+ b2 (a+ b)(a− b) = a2 − b2 (a+ b)n = n ∑ k=0 ( n k ) an−kbk Powers, exponentials and logarithms a0 = 1 axay = ax+y ax/ay = ax−y (ax)y = axy (ab)x = axbx ln(1) = 0 ln(xy) = ln(x) + ln(y) ln (x y ) = ln(x)− ln(y) ln( 1 x ) = − ln(x) ln(xy) = y ln(x) eln(x) = x ln(ex) = x loga(x) = ln(x) ln(a) ax = ex ln(a) (logb a)(loga b) = 1 The trigonometric functions (Std. angles)◦ 0◦ 30◦ 45◦ 60◦ 90◦ x (rad) 0 π/6 π/4 π/3 π/2 cos(x) 1 √ 3/2 1/ √ 2 1/2 0 sin(x) 0 1/2 1/ √ 2 √ 3/2 1 tan(x) 0 1/ √ 3 1 √ 3 ej def cos(−x) = cos(x) cos(x± π) = − cos(x) sin(−x) = − sin(x) sin(x± π) = − sin(x) sin(π − x) = sin(x) cos(x+ 2π) = cos(x) cos(π − x) = − cos(x) sin(x+ 2π) = sin(x) tan(−x) = − tan(x) tan(x± π) = tan(x) Trig. eqns: sin(x) = c , |c| ≤ 1, löses av: cos(x) = c , |c| ≤ 1, löses av: tan(x) = c , c ∈ R, löses av: x = { x0 + 2nπ, n ∈ Z π − x0 + 2kπ, k ∈ Z x = ±x0 + n2π , n ∈ Z x = x0 + nπ , n ∈ Z cos2(x) + sin2(x) = 1 cos(2x) = cos2(x)− sin2(x) sin(2x) = 2 sin(x) cos(x) cos(2x) = 2 cos2(x)− 1 = 1− 2 sin2(x) sin2(x) = (1− cos(2x))/2 cos2(x) = (1 + cos(2x))/2 sin(x) = sin(π − x) = cos( π 2 − x) cos(x) = sin( π 2 − x) = − cos(π − x) sin(x± y) = sin(x) cos(y)± sin(y) cos(x) cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y) sin(x) sin(y) = 1 2 (cos(x− y)− cos(x+ y)) sin(x) cos(y) = 1 2 (sin(x− y) + sin(x+ y)) cos(x) cos(y) = 1 2 (cos(x− y) + cos(x+ y)) tan(x± y) = tan(x)± tan(y) 1∓ tan(x) tan(y) a cosx+ b sinx = A sin(x+ ϕ) = A cos(x− ψ), A = √ a2 + b2 och { sinϕ = cosψ = a/A cosϕ = sinψ = b/A The inverse trigonometric functions y = sin(x), x ∈ [−π 2 , π 2 ] ⇔ x = arcsin(y), y ∈ [−1, 1] y = cos(x), x ∈ [0, π] ⇔ x = arccos(y), y ∈ [−1, 1] y = tan(x), x ∈ (−π 2 , π 2 ) ⇔ x = arctan(y), y ∈ R arcsin(−x) = − arcsin(x) arccos(−x) = π − arccos(x) arctan(x) + arctan( 1 x ) = π 2 , x > 0 arctan(−x) = − arctan(x) arccos(x) = π 2 − arcsin(x) arctan(x) + arctan( 1 x ) = −π 2 , x < 0 15 januari 2019 File: formelblad-an.pdf Cheatsheet Calculus sid. 2 av 4 The complex numbers z = x+ iy = |z| eiϕ = |z|(cosϕ+ i sinϕ) x = Re(z) ∈ R, y = Im(z) ∈ R, |z| = |z| = √ x2 + y2 z = x− iy = |z| e−iϕ = |z|(cosϕ− i sinϕ) ϕ = arg(z), cosϕ = x/|z|, sinϕ = y/|z|; arg(z) = −ϕ z = z; zw = z w; z/w = z/w; zz = |z|2 |zw| = |z| |w|; |z/w| = |z|/|w|; |z + w| ≤ |z|+ |w| The Euler’s formulae: { eiϕ = cosϕ+ i sinϕ e−iϕ = cosϕ− i sinϕ { cosϕ = (eiϕ + e−iϕ)/2 sinϕ = (eiϕ − e−iϕ)/2i The de Moivre’s formula : (cosϕ+ i sinϕ)n = (eiϕ)n = einϕ = cos(nϕ) + i sin(nϕ) The polynomials and their roots Polynomial of degree n: Pn(z) = anz n + an−1z n−1 + · · ·+ a1z + a0 = n ∑ k=0 akz k, an 6= 0 The factor thm: Pn(z0) = 0 ⇔ Pn(z) = (z − z0)Qn−1(z), where Qn−1 is a polynomial of degree n− 1 Polynomials with real coeffients: If Pn(z0) = 0 and Im(z0) 6= 0, then Pn(z0) = 0, and hence Pn(z) = (z − z0)(z − z0)Qn−2(z) = (z2 − 2Re(z0)z + |z0|2)Qn−2(z) Completing squares in second-degree polynomials: z2 + pz + q = ( z + p 2 )2 − p2 4 + q = (z − z1)(z − z2), z1,2 = −p 2 ± √ p2 4 − q. Derivatives Df(x) = df(x) dx = f ′(x) = lim h→0 f(x+ h)− f(x) h ; D = d dx Tangent line to the curve y = f(x) at the point (a, f(a)): y = f(a) + f ′(a)(x− a) Normal line to the curve y = f(x) at the point (a, f(a)):    y = f(a)− 1 f ′(a) (x− a), f ′(a) 6= 0 x = a , f ′(a) = 0 (αf(x) + βg(x))′ = αf ′(x) + βg′(x) Df(g(x)) = f ′(g(x))g′(x) (f g )′ = f ′g − fg′ g2 (fg)′ = f ′g + fg′ Dex = ex (f−1)′(b) = 1 f ′(a) om { f(a) = b f ′(a) 6= 0 Dxr = rxr−1 D ln(|x|) = 1 x Dax = ax ln(a) D sin(x) = cos(x) D cos(x) = − sin(x) D tan(x) = 1 cos2(x) = 1 + tan2(x) D arcsin(x) = 1√ 1− x2 D arccos(x) = − 1√ 1− x2 D arctan(x) = 1 1 + x2 L’Hôpital’s rules: If lim x→a f(x) g(x) = [0 0 ] or lim x→a f(x) g(x) = [∞ ∞ ] , both f and g have continuous derivatives in some neighbourhood of a, then the existence of lim x→a f ′(x) g′(x) = A ⇒ lim x→a f(x) g(x) = lim x→a f ′(x) g′(x) = A. The rules of L’Hôpital can be used recursively and are in vigour also when a = ∞ or a = −∞. Oblique asymptotes: The line y = kx+m is an oblique asymptote to the function f(x) for x→ ∞ if lim x→∞ (f(x)− kx−m) = 0. Then k = lim x→∞ f(x) x and m = lim x→∞ (f(x)− kx).
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved