Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Cheat Sheet for Physical Chemistry II | CHEM 312, Study notes of Physical Chemistry

Material Type: Notes; Professor: Kua; Class: Physical Chemistry II; Subject: Chemistry; University: University of San Diego; Term: Spring 2008;

Typology: Study notes

Pre 2010
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 08/18/2009

koofers-user-8xl
koofers-user-8xl 🇺🇸

10 documents

Partial preview of the text

Download Cheat Sheet for Physical Chemistry II | CHEM 312 and more Study notes Physical Chemistry in PDF only on Docsity! 1 Chemistry 312 Spring 2008 Equation Guide Constants h = 6.626 x 10-34 J s h = h/2π NA = 6.022 x 1023 mol-1 m(electron) = 9.1094 x 10-31 kg m(proton) = 1.6726 x 10-27 kg m(neutron) = 1.6749 x 10-27 kg c (vacuum) = 2.9979 x108 ms-1 Charge of an electron, e = 1.602 x 10-19 C k = 1.381 x 10-23 J K-1 R = 8.314 J K-1 mol-1 = 0.08206 L atm K-1 mol-1 Pressure conversions: 1 atm = 1.01325 bar = 1.01325 x 105 Pa = 760 mm Hg = 760 torr Particle in a box E = h 2 8m nx 2 a2 + ny 2 b2 + z 2 n c2 ! " # $ % & nx, ny, nz = 1,2,3,... Rigid Rotor ! EJ = h 2 2I J(J +1) I = µre 2 gJ = 2J +1 µ = m 1 m 2 m 1 + m 2 J = 0,1,2,... Harmonic Oscillator Ev = hνvib(v+1/2) v = 0,1,2,... νvib = 1/2π (k/µ)1/2 Quantum Theory (Electronic levels and light) Ephoton = hν = hc/λ Gas Equations PV = nRT (ideal) ! P + an 2 V 2 " # $ $ % & ' ' V ( nb( ) = nRT (van der Waals) ! Z = PV RT Z = 1 +B’P + C’P2 + ... (virial with P) ! Z =1+ B V + C V 2 + ... (virial with V) 2 Kinetic molecular theory of Gases ! PV = 1 3 Nmv rms 2 P = 1 3 "v rms 2 v rms = 3kT m = 3RT MM Dalton’s Law of Partial Pressures Ptot = PA + PB + Pc + ... Mole fraction ! " A = n A n tot P A = " A P tot Distributions Number of arrangements, ! W = g 1 N 1g 2 N 2g 31 N 3 ...( ) N! N 1 !N 2 !N 3 !... probability =W 1 gi" # $ % % & ' ( ( N Boltzmann distribution ! Ni N j = gi g j exp " Ei " E j( ) kT # $ % % & ' ( ( Ni N = gi q exp " Ei " E0( ) kT # $ % & ' ( ! N = N i i " Partition functions ! q = gi i " exp # Ei # E0( ) kT $ % & ' ( ) qtrans(1d ) = * 2 kT h 2 /8ma 2 + , - . / 0 1 2 qtrans(3d ) = 2*mkT h 2 + , - . / 0 3 2 V qrot = 2IkT 1h 2 qvib = 1 1# exp(#x) ; x = hvvib kT Thermal Energy ! (U "Uo) = RT 2 q dq dT = RT 2 d(lnq) dT For ideal gases: (U − Uo)trans = 0.5 RT per degree of freedom (U − Uo)rot = 0.5 RT per degree of freedom ! (U "U o ) vib"mod e = RT x exp(x ) "1 # $ % % & ' ( ( ; x = hv vib kT 5 ! d(lnK P ) dT = "H o RT 2 d(lnK P ) d(1/T) = #"H o R [Temperature dependence] Free energy functions: ! Go "H 298 o T = H o "H 298 o T " S o G o "U 0 o T = "R ln q o NA Fugacity, f Activity coefficient, γ = f / P ! G 2 "G 1 = RT ln f 2 f 1 Inter-relation of thermodynamic properties ! "G "P # $ % & ' ( T =V ; "G "T # $ % & ' ( P = )S ; " *G T( ) "T # $ % % % & ' ( ( ( P = ) *H T 2 "S "P # $ % & ' ( T = ) "V "T # $ % & ' ( P Relation between CP and Cv ! Cp " Cv = "T #V #T $ % & ' ( ) P 2 #V #P $ % & ' ( ) T for van der Waals gas (ignoring high order terms) ! Cp " Cv = R 1+ 2a R 2 T 2 P # $ % & ' ( for liquids and solids ! Cp "Cv = # 2VT $ ; # = 1 V %V %T & ' ( ) * + P $ = " 1 V %V %P & ' ( ) * + T where α is the thermal expansivity and β is the isothermal compressibility Raoult’s Law: ! xi = PA PA o ; GA liq =GA o + RT ln xA for solvent A. ! "G mix = x A RT ln x A + x B RT ln x B for a binary solution A-B. Henry’s Law: ! P B = kx B = k 'm ; G B =G B o + RT lnm for solvent B, standard state m = 1 ! G B =G B o + RT ln "m where γ is the activity coefficient 6 Kinetics For the general reaction aA + bB → cC + dD Rate = ! " 1 a d[A] dt = " 1 b d[B] dt = 1 c d[C] dt = 1 d d[D] dt = k[A] m [B] n Integrated Rate Laws: Half-lives: Zeroth order: [A] = [A]0 – kt [A]0/2k First order: ln[A] = ln[A]0 – kt 0.693/k Second order: 1/[A] = 1/[A]0 + kt 1/(k[A]0) Equilibria & Rates: For the elementary equilibrium ! A k1" # " k$1 % " " B , ! d[A] dt = "k 1 [A]+ k"1[B] Temperature dependence ! k = A exp "E a RT # $ % & ' ( Steady state approximation: If [M] is constant, d[M]/dt = 0 Rate equation for Michaelis-Menten enzyme catalyzed reactions Rate = ! k 2 [E tot ][S] K M + [S] ; K M = k"1 + k2 k 1 = [E][S] [E • S] ! E + S k1" # " k$1 % " " E •S E • S k 2" # " E + products Rate equation for Lindemann mechanism for unimolecular gas phase reactions Rate = ! k 1 k 2 [A] 2 k"2[A]+ k1 ! ! A + A k2" # " k$2 % " " A + A * A * k 1" # " products
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved