Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Chemistry-Thermodynamics Study Notes Whole semester (54 pages), Study notes of Thermodynamics

This study set is fully comprehensive, detailed, and easy to follow. A detailed study guide on all the important information for every exam and joined them to make one big study guide for the whole class. It includes many diagrams and charts to help understand the material. CONTENTS 3 laws of thermodynamics gas law pressure, temperature work, heat and energy power energy balance refrigeration cubic equations of state problems with detailed solution

Typology: Study notes

2020/2021

Available from 04/19/2022

johncheme
johncheme ๐Ÿ‡ต๐Ÿ‡ญ

1 document

1 / 54

Toggle sidebar

Related documents


Partial preview of the text

Download Chemistry-Thermodynamics Study Notes Whole semester (54 pages) and more Study notes Thermodynamics in PDF only on Docsity! Introduction and Basic Concepts | 01 INTRODUCTION Thermodynamics is the study of (1) all energy in all its form, (2) conversion of energy from one form to another, (3) transfer of energy, and (4) its effect on the properties. LAWS OF THERMODYNAMICS Zeroth Law of Thermodynamics states that if a body A is in equilibrium with body B, then they have the same temperature. First Law of Thermodynamics states the conservation of energy and introduces the concept of internal energy. Second Law of Thermodynamics dictates the limits on the conversion of heat into work and provides the yard stick to measure the performance of various processes. It also tells whether a particular process is feasible or not and specifies the direction in which a process will proceed. Consequently, it also introduces the concept of entropy. Third Law of Thermodynamics defines the absolute zero of entropy Three measures of amount of size are used are the mass (m), number of moles (n) and total volume (Vt). The number of moles can be calculated by dividing the mass with its molecular or atomic weight (M) which has a unit of amu or g/mol. We must note that the mole used in thermodynamics and other subjects refers to the gram- mole of Chemical Engineering and Industrial Process Calculations. Total volume, representing the size of a system, is a defined quantity given ass the product of three lengths. It has the following relations to the specific volume or molar volume. ๐‘‰๐‘ก โ‰ก ๐‘š๐‘‰๐‘š ๐‘‰๐‘ก โ‰ก ๐‘›๐‘‰๐‘  Volume along with density are independent of the size of a system and are examples of intensive thermodynamic variables. Measures of Amount of Size Introduction and Basic Concepts | 02 Force The SI unit for force is Newton (N), which is derived from Newtonโ€™s second law which states that the acceleration of any particular mass is directly resultant to the resultant force and inversely proportional to its mass. To translate these qualities mathematically a constant gc is introduced. ๐น = ๐‘š๐‘Ž ๐‘”๐‘ Wherein gc = 1 (kg-m/s2)/N = 32.2 (lbm-ft/s2)/lbf Temperature It is defined as degree or intensity of heat present in a substance or object expressed accordingly to a comparative scale. There are four temperature scales present with the most common being in Celsius (OC) and the SI unit being in Kelvin (K). TEMPERATURE CONVERSION โ„ƒ = 5 9 (โ„‰ โˆ’ 32) โ„‰ = 9 5 (โ„ƒ+ 32) ๐พ = โ„ƒ+ 273.15 Fahrenheit to Celsius Celsius to Fahrenheit Celsius to Kelvin R = โ„‰+ 459.67 Fahrenheit to Rankine Pressure The pressure (P) exerted of a fluid on a surface is the normal force exerted by the fluid per unit area of the surface. ๐‘ƒ = ๐น ๐ด with a unit of ๐‘ ๐‘š2 or ๐‘˜๐‘” ๐‘šโˆ—๐‘ 2 or Pa Introduction and Basic Concepts | 05 Gen. Eq. (WORK) ๐‘‘๐‘Š = โˆ’๐‘ƒ๐‘œ๐‘๐‘๐‘œ๐‘ ๐‘–๐‘›๐‘”๐‘‘๐‘‰ We can consider this equation for both reversible and irreversible processes. A reversible process where the direction can be reversed at any point by an infinitesimal change in external conditions while an irreversible process cannot. While work for irreversible process follow the equation above, the reversible process of gases can follow: ๐‘‘๐‘Š = โˆ’๐‘ƒ๐‘”๐‘Ž๐‘ ๐‘‘๐‘‰ Heat is the energy driven by differences in temperature. Similar to work, it is energy in transit denoted by symbol (Q). Heat and Work, by convention, is positive if it is absorbed done on the system. It is negative if it is released or done by the system. The mathematical statement for heat states that it is directly proportional to the change in temperature having a constant known as heat capacity. ๐‘„ = ๐‘›๐ถโˆ†๐‘‡ ๐‘œ๐‘Ÿ ๐‘„ = ๐‘š๐ถโˆ†๐‘‡ When integrated, this equation yields the work of a finite process. By convention, work is regarded positive when the displacement is in the same direction as the applied force and negative if it goes the opposite direction. The work which accompanies a change in the volume of a fluid can be expressed as: HEAT> System and Surroundings System is the region of space being studied while surroundings are the rest of the universe Volumetric Properties of Pure Substances | 06 VOLUMETRIC PROPERTIES OF PURE SUBSTANCES PVT Relations of Pure Substances In single-phase regions, the relationship of pressure, volume and temperature can be described analytically as f(P,V,T) = 0 or also known as the PVT Equation of state. An equation of state may be solved for any one of the three quantities P,V or T as a function of the other two. We can set these functions as: ๐‘‘๐‘ƒ = แ‰ค ๐œ•๐‘ƒ ๐œ•๐‘‰ ๐‘‡ ๐‘‘๐‘‰ + แ‰ค ๐œ•๐‘ƒ ๐œ•๐‘‡ ๐‘‰ ๐‘‘๐‘‡ ๐‘‘๐‘‡ = แ‰ค ๐œ•๐‘‡ ๐œ•๐‘‰ ๐‘ƒ ๐‘‘๐‘‰ + แ‰ค ๐œ•๐‘‡ ๐œ•๐‘ƒ ๐‘‰ ๐‘‘๐‘ƒ ๐‘‘๐‘‰ = แ‰ค ๐œ•๐‘‰ ๐œ•๐‘ƒ ๐‘‡ ๐‘‘๐‘ƒ + แ‰ค ๐œ•๐‘‰ ๐œ•๐‘‡ ๐‘ƒ ๐‘‘๐‘‡ The partial derivates in the last equation have definite physical meanings, and are related to two properties namely, volume expansivity and isothermal compressibility, which are commonly tabulated for liquids. ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐ธ๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐›ฝ โ‰ก 1 ๐‘‰ แ‰ค ๐œ•๐‘‰ ๐œ•๐‘‡ ๐‘ƒ ๐ผ๐‘ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐ถ๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘–๐‘๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐œ… โ‰ก โˆ’ 1 ๐‘‰ แ‰ค ๐œ•๐‘‰ ๐œ•๐‘ƒ ๐‘‡ When substituting these properties in the equation, it would result to: ๐‘‘๐‘‰ ๐‘‰ = ๐›ฝ๐‘‘๐‘‡ โˆ’ ๐œ…๐‘‘๐‘ƒ Volumetric Properties of Pure Substances | 07 Ideal Gas Laws And evaluating the equation, we can calculate changes in properties for liquids as: For Adiabatic Processes Where: ๐‘™๐‘› ๐‘‰2 ๐‘‰1 = ๐›ฝ ๐‘‡2 โˆ’ ๐‘‡1 โˆ’ ๐œ… ๐‘ƒ2 โˆ’ ๐‘ƒ1 For small changes in T and P, little error is introduced if they are assumed constant. GAS LAW FORMULAS ๐‘ƒ1๐‘‰1 = ๐‘ƒ2๐‘‰2 ๐‘‰1 ๐‘‡1 = ๐‘‰2 ๐‘‡2 Boyleโ€™s Law (Isothermal) Charlesโ€™ Law (Isobaric) ๐‘ƒ1 ๐‘‡1 = ๐‘ƒ2 ๐‘‡2 Gay-Lussacโ€™s Law (Isochoric) ๐‘ƒ๐‘‰ = ๐‘›๐‘…๐‘‡ Ideal Gas Law ๐‘‡1๐‘‰ ๐›พโˆ’1 1 = ๐‘‡2๐‘‰ ๐›พโˆ’1 2 ๐‘‡1๐‘ƒ 1โˆ’๐›พ ๐›พ 1 = ๐‘‡2๐‘ƒ 1โˆ’๐›พ ๐›พ 2 ๐‘ƒ1๐‘‰ ๐›พ 1 = ๐‘ƒ2๐‘‰ ๐›พ 2 ๐ถ๐‘ƒ = ๐ถ๐‘‰ + ๐‘… ๐›พ โ‰ก ๐ถ๐‘ƒ ๐ถ๐‘‰ ๐ถ๐‘ƒ = 5 2 ๐‘… ๐ถ๐‘ƒ = 7 2 ๐‘… Monatomic Ideal Gas Diatomic Ideal Gas First Law of Thermodynamics | 10 Internal Energy (U) is the energy of a substance due to the configuration and activity of its molecules, atoms and subatomic units. It is the result of the chaotic motion of gas molecules, rotational motion of molecules or group of atoms which are free to move within a molecule, internal vibration of atoms within the molecule, and motion of electrons within the atom. Internal Energy Enthalpy (H) is a thermodynamic property which describes a mathematical expression of: Enthalpy ๐ป โ‰ก ๐‘ˆ + ๐‘ƒ๐‘‰ ๐‘‘๐ป = ๐‘‘๐‘ˆ + ๐‘‘(๐‘ƒ๐‘‰) Any body has a capacity to contain heat mathematically described as: Heat Capacity ๐ถ โ‰ก ๐‘‘ ฮค๐‘„ ๐‘‘ ๐‘‡ At constant volume, it refers to the energy required to raise the temperature of a unit quantity of a substance by one degree as the volume is maintained constant. ๐ถ = ( ๐œ•๐‘ˆ ๐œ•๐‘‡ )๐‘‰ ๐‘„ = ๐‘›โˆ†๐‘ˆ = ๐‘›๐ถ๐‘‰โˆ†๐‘‡ At constant pressure, it refers to the energy required to raise the temperature of a unit quantity of a substance by one degree as the pressure is maintained constant. ๐ถ = ( ๐œ•๐ป ๐œ•๐‘‡ )๐‘ƒ ๐‘„ = ๐‘›โˆ†๐ป = ๐‘›๐ถ๐‘ƒโˆ†๐‘‡ For solid and liquids, Cp = Cv while for ideal gases, Cp = Cv + R First Law of Thermodynamics | 11 Energy Balances Closed Systems Following the law of conservation energy wherein energy can neither be created nor destroyed during a process, only be transformed. Thus, the energy closed in the system and the energy entering the system is equal to the energy stored in a system and energy exiting the system. The energy balance will therefore become: Gen. Eq. (ENERGY BALANCES) ๐‘‘๐‘ˆ + ๐‘‘๐พ๐ธ + ๐‘‘๐‘ƒ๐ธ โ‰ก ๐‘‘๐‘„ + ๐‘‘๐‘Š For closed systems, they undergo processes that cause no changes in external potential energy and external kinetic energy. For such process, there is a flow of energy, but no flow of mass across the boundary of the system thus the energy balance equation becomes: โˆ†๐‘ˆ = ๐‘„ +๐‘Š Isolated Systems For isolated systems, there is no exchange of energy between the system and surroundings and only experiences internal thermodynamic equilibrium. Thus: โˆ†๐‘ˆ = 0 โˆ†๐พ๐ธ = 0 โˆ†๐‘ƒ๐ธ = 0 ๐‘„ = 0 ๐‘Š = 0 Open Systems The laws of mass and energy conservation apply to all processes, to open as well as to closed systems. There are processes in which open systems includes closed systems as special cases. An open system is where both mass and energy have an exchange with both the system and the surrounding. Usually, these types of systems are considered in steady-state. Steady state conditions are characterized by: 1. There is no accumulation or depletion of mass and energy within the system over the time considered. 2. The mass flow rate is the same at all points along the path of flow of fluid 3. The properties of the fluid may vary from point to point of the system but the properties at a given point are constant with time First Law of Thermodynamics | 12 Wherein the following nomenclature are: แˆถ๐‘š = mass flow rate (kg/s) q = volumetric flow rate (m3/s) u = velocity (m/s) A = Cross-sectional area perpendicular to the flow (m2) ฯ= density (kg/m3) V = Specific Volume (m3/kg) G = Mass velocity (kg/s-m2) P = Pressure T = Temperature U = Internal Energy (kJ/kg) h = Elevation from a reference plane Q = Heat (kJ/kg) Ws = Shaft Work (kJ/kg) H = Enthalpy (kJ/kg) KE = Kinetic Energy (kJ/Kg) PE = Potential Energy (kJ/kg) Since it follows the first law of thermodynamics, the derived energy balance equation will still be โˆ†๐‘ˆ + โˆ†๐พ๐ธ + โˆ†๐‘ƒ๐ธ = ๐‘„ +๐‘Š The work considered in this type of system consists of two types of work considerably: 1. Flow Work or Energy from Pressure โ€“ The entering fluid carries flow energy (P1V1) as a result of being pushed into the system by the fluid immediately behind it. Similarly, the fluid on passing the second point does work (P2V2) by pushing the fluid just ahead of it. Therefore, a net flow work done by the system would be P2V2 โ€“ P1V1 or delta PV. Second Law of Thermodynamics | 15 SECOND LAW OF THERMODYNAMICS The Second Law of Thermodynamic States that: 1. The spontaneous flow of heat is unidirectional from higher temperature to the lower temperature 2. All naturally occurring processes always tend to change spontaneously in a direction that will lead to equilibrium 3. Not all of the heat absorbed by a system can be converted into work without leaving permanent changes Heat Engine An engine is a device or machine that produces work from heat in a cyclic process. Essential to all heat engine cycles are absorption of heat from a hot reservoir at a high temperature, production of work and rejection of heat to a cold reservoir at a lower temperature. Gen. Eq. (HEAT ENGINE) ๐‘„๐ป = ๐‘„๐ถ + ๐‘Š THERMAL EFFICIENCY ฮท = ๐‘Š ๐‘„๐ป = ๐‘„๐ป โˆ’ ๐‘„๐ถ ๐‘„๐ป = 1 โˆ’ ๐‘„๐ถ ๐‘„๐ป Second Law of Thermodynamics | 16 A Carnot Engine is an ideal engine whose theory states that for two given heat reservoirs, no engine can have a higher thermal efficiency than that of a Carnot engine. To consider a Carnot Engine Cycle: 1. A system is initially in thermal equilibrium at Tc with a cold reservoir undergoes a reversible adiabatic compression that causes its temperature to rise that of a hot reservoir, TH (Path 4 โ€“ 1). 2. The system maintains its contact with the hot reservoir at TH and undergoes a reversible isothermal expansion during which heat QH is absorbed from the hot reservoir (Path 1 โ€“ 2). 3. The system undergoes a reversible adiabatic expansion opposite direction of step 1 that brings its temperature back to that of the cold reservoir at Tc (Path 2 โ€“ 3). 4. The systems maintains contact with the reservoir at Tc and undergoes a reversible isothermal compression that returns to the initial state with rejection of heat QC to the cold reservoir (Path 3 โ€“ 4). For any Carnot Engine, the ratio between the heat at the reservoirs is equal to the ratio of their respective temperatures. Carnot Engine ๐‘„๐ป ๐‘‡๐ป = ๐‘„๐ถ ๐‘‡๐ถ Using this theorem, we can calculate the maxim efficiency an engine can give being. MAXIMUM THERMAL EFFICIENCY ฮท๐‘š๐‘Ž๐‘ฅ = ๐‘Š ๐‘‡๐ป = ๐‘‡๐ป โˆ’ ๐‘‡๐ถ ๐‘‡๐ป = 1 โˆ’ ๐‘‡๐ถ ๐‘‡๐ป Second Law of Thermodynamics | 17 Refrigerators A refrigerator is also an application of the second law. It absorbs the heat at a low temperature and through additional work (such as electricity) rejects the heat at a higher temperature. The system is referred to as the refrigerant. While the flow diagrams indicate a reverse flow of direction, the equation for the heat engine remains the same as other heat engines. ๐‘„๐ป ๐‘‡๐ป = ๐‘„๐ถ ๐‘‡๐ถ Entropy Entropy (S) is a state function which allows us to predict the natural direction of a process. It is regarded as a measure of the order and disorder of particles in a system. The larger the space, the more possible arrangements particles can exist within a system. Recall the relation derived in the Carnot Engine, and remove the absolute value signs we get the respective equation. ๐‘„๐ป ๐‘‡๐ป = โˆ’๐‘„๐ถ ๐‘‡๐ถ Putting them on the same side, we have an equation that describes entropy. Similar to Internal Energy and Enthalpy, within a system, the change will be zero. ๐‘„๐ป ๐‘‡๐ป + ๐‘„๐ถ ๐‘‡๐ถ = 0 = โˆ†๐‘† Second Law of Thermodynamics | 20 แˆถ๐‘†๐‘‡ + แˆถ๐‘†๐บ = ๐‘‘๐‘†๐ถ๐‘‰ ๐‘‘๐‘ก Entropy can be transported across the control surface by means of heat flow. If heat flows at the rate dotQj across a portion of the control surface at a temperature T csj, the resulting rate of transport is dotQj/ Tcsj. The sum would be: ๐›ด แˆถ๐‘„๐‘— ๐‘‡๐‘๐‘ ,๐‘— Entropy can also be transported by flowing streams. Each stream entering or leaving the control volume carries with it, entropy for which the transport rate is dotms. The net rate of transport into control value would then be: แˆถ๐‘š๐‘†๐‘–๐‘› - แˆถ๐‘š๐‘†๐‘œ๐‘ข๐‘ก The entropy balance can be then written as: T in the equation is the temperature of the surroundings. If dotSG is equal to zero, then it is a reversible process. If it is greater than zero, then the process is irreversible Entropy Balance (OPEN) เท แˆถ๐‘„๐‘— ๐‘‡๐‘๐‘ ,๐‘— โˆ’ ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  + แˆถ๐‘†๐บ = ๐‘‘๐‘†๐ถ๐‘‰ ๐‘‘๐‘ก For a steady-state flow process, the rate of change of entropy is zero since control volume has constant mass and entropy. The equation becomes แˆถ๐‘†๐บ = ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  โˆ’ ๐›ด แˆถ๐‘„๐‘— ๐‘‡โ„ด,๐‘— โ‰ฅ 0 Second Law of Thermodynamics | 21 Calculation of Ideal Work Note than in a completely reversible process in a steady state flow, dotSG is equal to zero. By rearranging terms, we can derive an equation in terms of heat. แˆถ๐‘†๐บ = ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  โˆ’ ๐›ด แˆถ๐‘„๐‘— ๐‘‡โ„ด,๐‘— = 0 แˆถ๐‘„๐‘— = ๐‘‡โ„ด๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  We can then replace this value of Q in the general open system balance equation so that Entropy would become a variable of the equation. We also know that for any reversible process, the amount of work produced is the maximum, so what we can calculate is the ideal work. ๐›ฅ[ แˆถ๐‘š(๐ป + ๐พ๐ธ + ๐‘ƒ๐ธ)]๐‘“๐‘  = ๐‘‡๐œŽ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  + แˆถ๐‘Š๐‘ ๐‘Ÿ๐‘’๐‘ฃ แˆถ๐‘Š๐‘ ๐‘Ÿ๐‘’๐‘ฃ = แˆถ๐‘Š๐‘ โˆ’๐‘–๐‘‘๐‘’๐‘Ž๐‘™ = ๐›ฅ[ แˆถ๐‘š(๐ป + ๐พ๐ธ + ๐‘ƒ๐ธ)]๐‘“๐‘  โˆ’ ๐‘‡๐œŽ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  Recall the thermodynamic efficiency of a system. We calculate for the efficiency differently is it is either required or produced. ๐œ‚ ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ = แˆถ๐‘Š๐‘–๐‘‘๐‘’๐‘Ž๐‘™ แˆถ๐‘Š๐‘† ๐œ‚ ๐‘ค๐‘œ๐‘Ÿ๐‘˜ ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘’๐‘‘ = แˆถ๐‘Š๐‘† แˆถ๐‘Š๐‘–๐‘‘๐‘’๐‘Ž๐‘™ Lost work is work wasted as the result of irreversibility in a process. Lost work can be found in either work-producing or work-requiring processes. ๐‘Š๐ฟ๐‘œ๐‘ ๐‘ก = ๐‘Š๐‘–๐‘‘๐‘’๐‘Ž๐‘™ โˆ’๐‘Š๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘Š๐ฟ๐‘œ๐‘ ๐‘ก = ๐‘Š๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ โˆ’๐‘Š๐‘–๐‘‘๐‘’๐‘Ž๐‘™ Work-Producing Work-Requiring Lost Work Second Law of Thermodynamics | 22 For actual work, or an irreversible process, entropy cannot be equated to zero แˆถ๐‘†๐บ = ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  โˆ’ ๐›ด แˆถ๐‘„๐‘— ๐‘‡โ„ด,๐‘— แˆถ๐‘„ = ๐‘‡โ„ด๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  โˆ’ ๐‘‡โ„ด แˆถ๐‘†๐บ We can then substitute this value for Q in the open system balance equation for an irreversible process using the general equation. For both irreversible and reversible open system balances, both contain changes in enthalpy, kinetic and potential energy multiplied to the mass rate. We can use this to substitute one equation to the other. ๐›ฅ[ แˆถ๐‘š(๐ป + ๐พ๐ธ + ๐‘ƒ๐ธ)]๐‘“๐‘  =๐‘‡โ„ด๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  โˆ’ ๐‘‡โ„ด แˆถ๐‘†๐บ + แˆถ๐‘Š๐‘ โˆ’๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ แˆถ๐‘Š๐‘ โˆ’๐‘–๐‘‘๐‘’๐‘Ž๐‘™ + ๐‘‡๐œŽ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  = ๐›ฅ[ แˆถ๐‘š(๐ป + ๐พ๐ธ + ๐‘ƒ๐ธ)]๐‘“๐‘  แˆถ๐‘Š๐‘ โˆ’๐‘–๐‘‘๐‘’๐‘Ž๐‘™ + ๐‘‡๐œŽ๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  = ๐‘‡โ„ด๐›ฅ( แˆถ๐‘š๐‘†)๐‘“๐‘  โˆ’ ๐‘‡โ„ด แˆถ๐‘†๐บ + แˆถ๐‘Š๐‘ โˆ’๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ We now have two terms that can cancel each other out. We also know that in a work requiring process, the work lost is equal to the actual minus ideal. Therefore, we have an equation of work lost in terms of entropy. ๐‘‡โ„ด แˆถ๐‘†๐บ = แˆถ๐‘Š๐‘ โˆ’๐‘Ž๐‘๐‘ก๐‘ข๐‘Ž๐‘™ โˆ’ แˆถ๐‘Š๐‘ โˆ’๐‘–๐‘‘๐‘’๐‘Ž๐‘™ แˆถ๐‘Š๐‘™๐‘œ๐‘ ๐‘ก = ๐‘‡โ„ด แˆถ๐‘†๐บ The greater the irreversibility of a process, the greater the rate of entropy generation and the greater the amount of energy that becomes unavailable for work. Thus, every irreversibility carries with it a price. Production of Power from Heat | 25 The Rankine cycle addresses the problems of the Carnot cycle by superheating the steam. Rankine Cycle 3 - 4 (Condenser) - A constant pressure and constant temperature process produces saturated liquid 4 - 1 (Pump) 1 - A (Boiler) - Reversible, adiabatic, isentropic pumping of saturated liquid to the pressure of the boiler producing subcooled liquid A - B (Boiler) - Heating of subcooled liquid to its saturation temperature (Sensible heat) - Vaporization at constant temperature and pressure (Latent Heat) B- 2 (Boiler) 2 โ€“ 3(Turbine) - Superheating of steam way above saturation temperature (Sensible Heat) - Reversible, adiabatic, isentropic expansion of vapor from boiler pressure to condenser pressure. Work for Pumps ๐‘Š๐‘  = โˆ†๐ป = ๐‘‰โˆ†๐‘ƒ Only applicable at constant Entropy Refrigeration and Liquefaction | 26 REFRIGERATION AND LIQUEFACTION Heat absorbed at a low temperature is continuously rejected to the surroundings at a higher temperature, or essentially, a reversed heat-engine cycle. Vapor-Compression Refrigeration Cycle The path taken by the system is the reverse of an engine, and usually thermodynamic graphs can be used to get the properties of the system at different points. Taking the energy balance equations at the four different components: ๐‘‚๐ธ๐ต ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐ธ๐‘ฃ๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘œ๐‘Ÿ: ๐‘‚๐ธ๐ต ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐ถ๐‘œ๐‘š๐‘๐‘Ÿ๐‘’๐‘ ๐‘ ๐‘œ๐‘Ÿ: ๐‘‘๐ป + ๐‘‘๐พ๐ธ + ๐‘‘๐‘ƒ๐ธ = ๐‘„ + ๐‘Š๐‘  ๐‘‘๐ป + ๐‘‘๐พ๐ธ + ๐‘‘๐‘ƒ๐ธ = ๐‘„ + ๐‘Š๐‘  ๐‘‘๐ป + (0) + (0) = ๐‘„ + (0) ๐‘‘๐ป + (0) + (0) = (0) + ๐‘Š๐‘  ๐‘„๐ถ = ๐ป2 โˆ’๐ป1 ๐‘Š๐‘  = ๐ป3 โˆ’ ๐ป2 ๐‘‚๐ธ๐ต ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐ถ๐‘œ๐‘›๐‘‘๐‘’๐‘›๐‘ ๐‘’๐‘Ÿ: ๐‘‚๐ธ๐ต ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘‡โ„Ž๐‘Ÿ๐‘œ๐‘ก๐‘ก๐‘™๐‘’ ๐‘‰๐‘Ž๐‘™๐‘ฃ๐‘’: ๐‘‘๐ป + ๐‘‘๐พ๐ธ + ๐‘‘๐‘ƒ๐ธ = ๐‘„ + ๐‘Š๐‘  ๐‘‘๐ป + ๐‘‘๐พ๐ธ + ๐‘‘๐‘ƒ๐ธ = ๐‘„ + ๐‘Š๐‘  ๐‘‘๐ป + (0) + (0) = ๐‘„ + (0) ๐‘‘๐ป + (0) + (0) = (0) + (0) ๐‘„๐ป = ๐ป4 โˆ’๐ป3 ๐ป1 โˆ’ ๐ป4 = 0 Usually H2 is a saturated vapor, and H4 is a saturated liquid Refrigeration and Liquefaction | 27 The measure of effectiveness of a refrigerator is its coefficient of performance which is the heat absorbed at the lower temperature divided by the net work Absorption-Refrigeration Unit Coefficient of Performance ๐œ” = ๐‘„๐ถ ๐‘Š For Carnot Refrigerator ๐œ” = ๐‘‡๐ถ ๐‘‡๐ป โˆ’ ๐‘‡๐ถ Other Types of Refrigeration Units Two-stage Cascade Refrigeration Liquefaction Liquefaction is the process of changing a gas (natural state) to liquid. Condensation on the other hand changes a vapor (natural state is liquid) back to its liquid state. Liquefaction involves three main processes 1. Heat exchange/Cooling (Constant P) (A to 1) 2. Expansion process from which work is obtained (A to 2) 3. Throttling process (A to 3) (A to B ; B to Aโ€™ ; Aโ€™ to 3โ€™) Vapor Liquid Equilibrium Introduction | 30 In more general context, consider a volatile substance i contained in a gas-liquid system in equilibrium at temperature T and pressure P. Raoultโ€™s Law states that the partial pressure of substance i in the gas phase is equal to the product of mole fraction of i (xi) in the liquid phase and the vapor pressure of pure liquid๐‘ท๐’Š โˆ˜ at temperature T. The mathematical statement of Raoultโ€™s Law is: ๐‘ท๐’Š = ๐’™๐’Š๐‘ท๐’Š โˆ˜ - a relation of partial pressure of one component in the vapor phase to the mole fraction of the same component in the liquid phase. Consider a binary mixture with components A and B: Note: x - mole fraction in the liquid phase y = mole fraction in the vapor phase xA + xB = 1 yA + yB = 1 Daltonโ€™s Law of Partial Pressures: ๐‘ƒ = ๐‘ƒ๐ด + ๐‘ƒ๐ต Raoultโ€™s Law with Daltonโ€™s Law of Partial Pressures: ๐‘ƒ = ๐‘ฅ๐ด๐‘ƒ๐ด โˆ˜ + ๐‘ฅ๐ต๐‘ƒ๐ตโˆ˜ Vapor is an ideal gas: ๐‘ฆ๐ด = ๐‘ƒ๐ด ๐‘ƒ ๐‘ฆ๐ต = ๐‘ƒ๐ต ๐‘ƒ Bubble Point Temperature - The temperature when the liquid starts to vaporize Dew Point Temperature - The temperature when the vapor starts to condense Mathematical Statement of Raoultโ€™s Law Henryโ€™s Law Henryโ€™s law is applied when a gas solute is dissolved in the liquid phase and the critical temperature of the gas is lower than the temperature of application. Henryโ€™s law states that the partial pressure of the species in the vapor phase is directly proportional to its liquid-phase mole fraction. ๐‘ฆ๐‘–๐‘ƒ = ๐‘ƒ๐‘– = ๐‘ฅ๐‘–โ„‹๐‘– where โ„‹๐‘– = ๐ป๐‘’๐‘›๐‘Ÿ๐‘ฆโ€ฒ๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก Vapor Liquid Equilibrium Introduction | 31 At low pressure, where gases can be considered ideal, it may be necessary Modified Raoultโ€™s law results when ๐œธ๐’Š, an activity coefficient is inserted into Raoultโ€™s law (solution (l) is non-ideal/ real soln): ๐‘ท๐’Š = ๐’™๐’Š๐›พ๐‘– ๐‘ท๐’Š ๐’”๐’‚๐’•๐’ ๐‘ท = ฯƒ๐’Š๐’™๐’Š ๐œธ๐’Š๐‘ท๐’Š ๐’”๐’‚๐’•๐’ ๐’š๐’Š = ๐’™๐’Š๐›พ๐‘– ๐‘ท๐’Š ๐’”๐’‚๐’•๐’ ๐‘ท ฯƒ๐’Š๐’š๐’Š = ๐Ÿ The activity coefficient, ๐›พ๐‘–, is introduced into Raoultโ€™s law to account for liquid-phase non- idealities. Activity coefficients are obtained from experimental data and using empirical equations. Some methods of estimating activity coefficients are shown in Appendix H (Smith, 8th Edition). VLE By Modified Raoultโ€™s Law Azeotropes An azeotrope is a point for which the dew point curve and the bubble point curve coincide, and maintains its constant boiling point and composition throughout distillation Positive azeotrope - boiling point of azeotrope is either less than the boiling points of its components Negative azeotrope - boiling point of azeotrope is greater than the boiling point of any of its components Azeotropic composition: x1 = y1 and x2 = y2 Solution: A quantity called relative volatility is represented by ๐›ผ. It is a measure of separability of volatile components in a mixture For a binary system (alpha is relative volatility): ๐›ผ12 = ๐‘ฆ1/๐‘ฅ1 ๐‘ฆ2/๐‘ฅ2 For azeotrope: x1 = y1 and x2 = y2, ๐›ผ12 = 1 (meaning: they will vaporize together) ๐‘ƒ1 = ๐‘ฅ1๐›พ1๐‘ƒ1 ๐‘ ๐‘Ž๐‘ก ๐‘ฆ1 = ๐‘ฅ1๐›พ1๐‘ƒ1 ๐‘ ๐‘Ž๐‘ก ๐‘ƒ ๐‘ฆ1 ๐‘ฅ1 = ๐›พ1๐‘ƒ1 ๐‘ ๐‘Ž๐‘ก ๐‘ƒ ๐‘ฆ2 ๐‘ฅ2 = ๐›พ2๐‘ƒ2 ๐‘ ๐‘Ž๐‘ก ๐‘ƒ ๐›ผ12 = ๐›พ1๐‘ƒ1 ๐‘ ๐‘Ž๐‘ก ๐›พ2๐‘ƒ2 ๐‘ ๐‘Ž๐‘ก = 1.0 ๐œธ๐Ÿ ๐œธ๐Ÿ = ๐‘ท๐Ÿ ๐’”๐’‚๐’• ๐‘ท๐Ÿ ๐’”๐’‚๐’• Solutions Thermodynamics Theory | 32 SOLUTIONS THERMODYNAMICS THEORY FUNDAMENTAL PROPERTY RELATIONS Homogenous Phases of Constant Composition Recall the First of Thermodynamics in a closed system with (n) number of moles: ๐‘‘ ๐‘›๐‘ˆ = ๐‘‘๐‘„๐‘Ÿ๐‘’๐‘ฃ + ๐‘‘๐‘Š๐‘Ÿ๐‘’๐‘ฃ Recall the Second Law of Thermodynamics: ๐‘‘๐‘„๐‘Ÿ๐‘’๐‘ฃ = ๐‘‡๐‘‘(๐‘›๐‘†) Recall the PV-Work Equation: ๐‘‘๐‘Š๐‘Ÿ๐‘’๐‘ฃ = โˆ’๐‘ƒ๐‘‘(๐‘›๐‘‰) Combining the three equation results to: ๐’… ๐’๐‘ผ = ๐‘ป๐’… ๐’๐‘บ โˆ’ ๐‘ท๐’…(๐’๐‘ฝ) Additional Thermodynamic Properties by Definition: 1. Enthalpy ๐ป โ‰ก ๐‘ˆ + ๐‘ƒ๐‘‰ ๐‘‘ ๐‘›๐ป = ๐‘‘(๐‘›๐‘ˆ) + [๐‘ƒ ๐‘‘ ๐‘›๐‘‰ + ๐‘›๐‘‰ ๐‘‘๐‘ƒ] 2. Helmholtz Energy ๐บ โ‰ก ๐ป โˆ’ ๐‘‡๐‘† ๐‘‘ ๐‘›๐บ = ๐‘‘ ๐‘›๐ป โˆ’ [๐‘‡ ๐‘‘ ๐‘›๐‘† + ๐‘›๐‘† ๐‘‘๐‘‡] 3. Gibbs Energy ๐ด โ‰ก ๐‘ˆ โˆ’ ๐‘‡๐‘† ๐‘‘ ๐‘›๐ด = ๐‘‘ ๐‘›๐‘ˆ โˆ’ [๐‘‡ ๐‘‘ ๐‘›๐‘† + ๐‘›๐‘† ๐‘‘๐‘‡] Helmholtz Energy (A) - Energy available to do non-PV work in a thermodynamic closed system at constant volume and temperature. Gibbs Energy (G) - the energy available to do non-PV work in a thermodynamic closed system at constant pressure and temperature. Gibbs energy relates the tendency of a physical or chemical system to simultaneously lower its energy H and increase its disorder S in a spontaneous natural process. Solution Thermodynamics is the application of thermodynamics in gas mixtures and liquid solutions. Solutions Thermodynamics Theory | 35 For the vapor (๏ก) phase: ๐‘‘(๐‘›๐บ)๐›ผ= (๐‘›๐‘‰)๐›ผ๐‘‘๐‘ƒ โˆ’ (๐‘›๐‘†)๐›ผ๐‘‘๐‘‡ +เท ๐‘– ๐œ‡๐‘– ๐›ผ ๐‘‘๐‘›๐‘– ๐›ผ For the liquid (๏ข) phase: ๐‘‘(๐‘›๐บ)๐›ฝ= (๐‘›๐‘‰)๐›ฝ๐‘‘๐‘ƒ โˆ’ (๐‘›๐‘†)๐›ฝ๐‘‘๐‘‡ +เท ๐‘– ๐œ‡๐‘– ๐›ฝ ๐‘‘๐‘›๐‘– ๐›ฝ For the whole two-phase system, considered to be a closed system recall that: ๐‘‘ ๐‘›๐บ = ๐‘›๐‘‰ ๐‘‘๐‘ƒ โˆ’ ๐‘›๐‘† ๐‘‘ ๐‘‡ Total-System Property: ๐‘›๐บ = (๐‘›๐บ)๐›ผ+(๐‘›๐บ)๐›ฝ Change in Total-System Property = Sum of Changes in Phase Properties ๐‘‘ ๐‘›๐บ = ๐‘‘(๐‘›๐บ)๐›ผ+๐‘‘(๐‘›๐บ)๐›ฝ ๐‘‘ ๐‘›๐บ = ๐‘›๐‘‰ ๐‘‘๐‘ƒ โˆ’ ๐‘›๐‘† ๐‘‘ ๐‘‡ + ฯƒ๐‘– ๐œ‡๐‘– ๐›ผ ๐‘‘๐‘›๐‘– ๐›ผ +ฯƒ๐‘– ๐œ‡๐‘– ๐›ฝ ๐‘‘๐‘›๐‘– ๐›ฝ At equilibrium, the equation becomes ฯƒ๐‘– ๐œ‡๐‘– ๐›ผ ๐‘‘๐‘›๐‘– ๐›ผ + ฯƒ๐‘– ๐œ‡๐‘– ๐›ฝ ๐‘‘๐‘›๐‘– ๐›ฝ = 0 Note that the number of moles in the liquid phase and in the vapor phase are a result of mass transfer between the two phases. Since it is a closed system in equilibrium, no new moles are added, and law of mass conservation applies. Therefore, any addition of moles in the vapor phase has an equivalent decrease in the liquid phase. Mathematically: ๐‘‘๐‘›๐‘– ๐›ผ = โˆ’๐‘‘๐‘›๐‘– ๐›ฝ Substituting the value in the previous equation ฯƒ๐‘– ๐œ‡๐‘– ๐›ผ ๐‘‘๐‘›๐‘– ๐›ผ + ฯƒ๐‘– ๐œ‡๐‘– ๐›ฝ (โˆ’๐‘‘๐‘›๐‘– ๐›ผ) = 0 Rearranging we get the term เท ๐‘– (๐œ‡๐‘– ๐›ผ โˆ’ ๐œ‡๐‘– ๐›ฝ )๐‘‘๐‘›๐‘– ๐›ผ = 0 For the statement to hold true then ๐œ‡๐‘– ๐›ผ = ๐œ‡๐‘– ๐›ฝ Solutions Thermodynamics Theory | 36 The chemical potential of a pure component is an intensive property ๐œ‡๐‘–,๐‘๐‘ข๐‘Ÿ๐‘’ = ๐บ๐‘– ๐‘–๐‘› ๐ฝ/๐‘š๐‘œ๐‘™ The chemical potential of a species in a mixture is a partial molar Gibbs energy ๐œ‡๐‘– = าง๐บ๐‘– = ๐œ• ๐‘›๐บ ๐œ•๐‘›๐‘– ๐‘ƒ,๐‘‡,๐‘›๐‘— ๐‘–๐‘› ๐ฝ/๐‘š๐‘œ๐‘™ For any generic property of the solution, we denote it as ๐‘€ ๐‘Ž๐‘›๐‘‘ เดฅ๐‘€๐‘– which can be unit-mass or unit-mole based. เดฅ๐‘€๐‘– refers to any partial molar property of species i which is defined as เดฅ๐‘€๐‘– โ‰ก ๐œ• ๐‘›๐‘€ ๐œ•๐‘›๐‘– ๐‘ƒ,๐‘‡,๐‘›๐‘— เดฅ๐‘€๐‘– = ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘–๐‘› ๐‘€ ๐‘œ๐‘“ ๐‘š๐‘–๐‘ฅ๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘–๐‘› ๐‘š๐‘œ๐‘™๐‘’๐‘  ๐‘œ๐‘“ ๐‘๐‘œ๐‘š๐‘ ๐‘– Solution properties ๐‘€, ๐‘‰, ๐‘ˆ, ๐ป, ๐‘†, ๐บ Partial properties เดฅ๐‘€๐‘– เดค๐‘‰๐‘–, เดฅ๐‘ˆ๐‘– , เดฅ๐ป๐‘– , าง๐‘†๐‘– , าง๐บ๐‘– Pure-species properties ๐‘€๐‘– , ๐‘‰๐‘–, ๐‘ˆ๐‘– , ๐ป๐‘– , ๐‘†๐‘– , ๐บ๐‘– PARTIAL PROPERTIES Equations Relating Molar and Partial Molar Properties Similar to how ๐’๐‘ฎ = ๐‘ฎ(๐‘ท, ๐‘ป, ๐’๐Ÿ, ๐’๐Ÿ, ๐’๐Ÿ‘, โ€ฆ , ๐’๐’Š) can be differentiated, we can do the same for any property M. Eqn (1): ๐’๐‘ด = ๐’‡(๐‘ท, ๐‘ป, ๐’๐Ÿ, ๐’๐Ÿ, โ€ฆ , ๐’๐’Š) Eqn (2): ๐‘‘ ๐‘›๐‘€ = ๐œ• ๐‘›๐‘€ ๐œ•๐‘ƒ ๐‘‡,๐‘› ๐‘‘๐‘ƒ + ๐œ• ๐‘›๐‘€ ๐œ•๐‘‡ ๐‘ƒ,๐‘› ๐‘‘๐‘‡ + ฯƒ๐‘– ๐œ• ๐‘›๐‘€ ๐œ•๐‘›๐‘– ๐‘ƒ,๐‘‡,๐‘›๐‘— ๐‘‘๐‘›๐‘– By definition of เดฅ๐‘€๐‘–, we can replace it in the equation: Eqn (3): ๐‘‘ ๐‘›๐‘€ = ๐‘› ๐œ• ๐‘€ ๐œ•๐‘ƒ ๐‘‡,๐‘ฅ ๐‘‘๐‘ƒ + ๐‘› ๐œ• ๐‘€ ๐œ•๐‘‡ ๐‘ƒ,๐‘ฅ ๐‘‘๐‘‡ + ฯƒ๐‘– เดฅ๐‘€๐‘– ๐‘‘๐‘›๐‘– The equation is in simpler form, where subscript x denotes differentiation at constant composition. Because mole fraction xi is ni/n, the equation becomes: Eqn (4a): ๐‘‘๐‘€ = ๐œ•๐‘€ ๐œ•๐‘ƒ ๐‘‡,๐‘ฅ ๐‘‘๐‘ƒ + ๐œ•๐‘€ ๐œ•๐‘‡ ๐‘ƒ,๐‘ฅ ๐‘‘๐‘‡ + ฯƒ๐‘– เดฅ๐‘€๐‘– ๐‘‘๐‘ฅ๐‘– Eqn (4b): ๐‘€ = ฯƒ๐‘– ๐‘ฅ๐‘– เดฅ๐‘€๐‘– (defines the summability) Eqn (5): ๐‘›๐‘€ = ฯƒ๐‘– ๐‘›๐‘– เดฅ๐‘€๐‘– (alternative expression) For example ,we use to property of Volume so we write ๐‘‰ instead of ๐‘€ and ๐‘‰๐‘– instead of เดฅ๐‘€๐‘–. Therefore, if we look at the partial molar volume in terms of the summability: ๐‘ฝ = ๐’™๐Ÿเดฅ๐‘ฝ๐Ÿ + ๐’™๐Ÿเดฅ๐‘ฝ๐Ÿ + โ€ฆ + ๐’™๐’Šเดฅ๐‘ฝ๐’Š + โ€ฆ + ๐’™๐‘ตเดฅ๐‘ฝ๐‘ต Solutions Thermodynamics Theory | 37 Gibbs/Duhem Equation ๐๐‘ด ๐๐‘ท ๐‘ป,๐’™ ๐’…๐‘ท + ๐๐‘ด ๐๐‘ป ๐‘ท,๐’™ ๐’…๐‘ป โˆ’เท ๐’Š ๐’™๐’Š๐’…เดฅ๐‘ด๐’Š = ๐ŸŽ at constant temperature and pressure, Gibbs/Duhem Eqn is reduced to: เท ๐’Š ๐’™๐’Š๐’…เดฅ๐‘ด๐’Š = ๐ŸŽ Partial Properties of Binary Solutions For any binary solution we have components with mole fractions ๐’™๐Ÿand ๐’™๐Ÿ, where ๐’™๐Ÿcan also be expressed as (๐Ÿ โˆ’ ๐’™๐Ÿ) From the summability equation ๐‘€ = ฯƒ๐‘– ๐‘ฅ๐‘– เดฅ๐‘€๐‘–, Partial Properties for binary solutions are written as ๐‘ด = ๐’™๐Ÿ เดฅ๐‘ด๐Ÿ + ๐’™๐Ÿ เดฅ๐‘ด๐Ÿ (A) Differentiating the equation (using product rule) ๐’…๐‘ด = ๐’™๐Ÿ๐’…เดฅ๐‘ด๐Ÿ + เดฅ๐‘ด๐Ÿ๐’…๐’™๐Ÿ + ๐’™๐Ÿ๐’…เดฅ๐‘ด๐Ÿ + เดฅ๐‘ด๐Ÿ๐’…๐’™๐Ÿ (B) At constant temperature and pressure, the Gibbs/Duhem Equation becomes: ๐’™๐Ÿ๐’…เดฅ๐‘ด๐Ÿ + ๐’™๐Ÿ๐’…เดฅ๐‘ด๐Ÿ = ๐ŸŽ (C) Since ๐‘ฅ1 + ๐‘ฅ2 = 1 it follows that ๐‘‘๐‘ฅ1 = โˆ’๐‘‘๐‘ฅ2. Eliminating ๐‘‘๐‘ฅ2 in equation (B) and combining the result with equation (C) give: ๐’…๐‘ด ๐’…๐’™๐Ÿ = เดฅ๐‘ด๐Ÿ โˆ’ เดฅ๐‘ด๐Ÿ or ๐’…๐‘ด ๐’…๐’™๐Ÿ = เดฅ๐‘ด๐Ÿ โˆ’ เดฅ๐‘ด๐Ÿ (D) Eliminating ๐’™๐Ÿ or ๐’™๐Ÿ in equation A: ๐‘€ = เดฅ๐‘€1 โˆ’ ๐‘ฅ2( เดฅ๐‘€1 โˆ’ เดฅ๐‘€2) or ๐‘€ = ๐‘ฅ1( เดฅ๐‘€1 โˆ’ เดฅ๐‘€2) + เดฅ๐‘€2 and combining with equation (D) result to: เดฅ๐‘ด๐Ÿ = ๐‘ด+ ๐’™๐Ÿ ๐’…๐‘ด ๐’…๐’™๐Ÿ (E1) or เดฅ๐‘ด๐Ÿ = ๐‘ดโˆ’ ๐’™๐Ÿ ๐’…๐‘ด ๐’…๐’™๐Ÿ (E2) Gibbs/Duhem equation (C) may be written in derivatives form: At constant T and P: ๐’™๐Ÿ ๐’…เดฅ๐‘ด๐Ÿ ๐’…๐’™๐Ÿ + ๐’™๐Ÿ ๐’…เดฅ๐‘ด๐Ÿ ๐‘‘๐‘ฅ1 = ๐ŸŽ or ๐’…เดฅ๐‘ด๐Ÿ ๐’…๐’™๐Ÿ = โˆ’ ๐’™๐Ÿ ๐’™๐Ÿ ๐’…เดฅ๐‘ด๐Ÿ ๐‘‘๐‘ฅ1 (F) lim ๐‘ฅ1โ†’1 ๐’…เดฅ๐‘ด๐Ÿ ๐’…๐’™๐Ÿ = 0 (Provided lim ๐‘ฅ1โ†’1 ๐’…เดฅ๐‘ด๐Ÿ ๐’…๐’™๐Ÿ is finite) (G) or: lim ๐‘ฅ2โ†’1 ๐’…เดฅ๐‘ด๐Ÿ ๐’…๐’™๐Ÿ = 0 (Provided lim ๐‘ฅ2โ†’1 ๐’…เดฅ๐‘ด๐Ÿ ๐’…๐’™๐Ÿ is finite) Solutions Thermodynamics Theory | 40 Partial Pressure (pi): The partial pressure of species i in an ideal gas mixture is the pressure that species i would exert if it alone occupied the molar volume of the mixture. In a mixture of gases, mole ratio = pressure ratio: ๐‘๐‘– ๐‘ƒ = ๐‘›๐‘– ๐‘› = ๐‘ฆ๐‘– ๐‘๐‘– = ๐‘ฆ๐‘–๐‘ƒ = ๐‘ฆ๐‘– ๐‘…๐‘‡ ๐‘‰๐‘–๐‘” ๐‘ฆ๐‘– = ๐‘š๐‘œ๐‘™๐‘’ ๐‘“๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘’๐‘  ๐‘– Partial Molar Enthalpy: เดฅ๐‘ฏ๐’Š ๐’Š๐’ˆ ๐‘ป, ๐‘ท = ๐‘ฏ๐’Š ๐’Š๐’ˆ ๐‘ป, ๐’‘๐’Š = ๐‘ฏ๐’Š ๐’Š๐’ˆ ๐‘ป, ๐‘ท Partial Molar Internal energy: เดฅ๐‘ผ๐’Š ๐’Š๐’ˆ ๐‘ป, ๐‘ท = ๐‘ผ๐’Š ๐’Š๐’ˆ ๐‘ป, ๐’‘๐’Š = ๐‘ผ๐’Š ๐’Š๐’ˆ ๐‘ป,๐‘ท Partial Molar Enthalpy and Internal Energy are independent in changes in Pressure Recall that the Change in Entropy for Ideal Gases is: ๐‘‘๐‘†๐‘–๐‘” = ๐ถ๐‘๐‘–๐‘” ๐‘‘๐‘‡ ๐‘‡ โˆ’ ๐‘… ๐‘‘๐‘ƒ ๐‘ƒ Integration from ๐‘๐‘– ๐‘ก๐‘œ ๐‘ƒ and at const T gives: ๐‘†๐‘– ๐‘–๐‘” ๐‘‡, ๐‘ƒ โˆ’ ๐‘†๐‘– ๐‘–๐‘” ๐‘‡, ๐‘๐‘– = โˆ’๐‘… ๐‘™๐‘› ๐‘ƒ ๐‘๐‘– = โˆ’๐‘… ๐‘™๐‘› ๐‘ƒ ๐‘ฆ๐‘–๐‘ƒ = ๐‘…๐‘™๐‘›๐‘ฆ๐‘– ๐‘†๐‘– ๐‘–๐‘” ๐‘‡, ๐‘๐‘– = ๐‘†๐‘– ๐‘–๐‘” ๐‘‡, ๐‘ƒ โˆ’ ๐‘…๐‘™๐‘›๐‘ฆ๐‘– ๐‘†๐‘– ๐‘–๐‘” ๐‘‡, ๐‘๐‘– = าง๐‘†๐‘– ๐‘–๐‘” (๐‘‡, ๐‘ƒ) Partial Molar Entropy: เดค๐‘บ๐’Š ๐’Š๐’ˆ ๐‘ป,๐‘ท = ๐‘บ๐’Š ๐’Š๐’ˆ ๐‘ป, ๐‘ท โˆ’ ๐‘น๐’๐’๐’š๐’Š Partial molar Gibbs Free Energy For the Gibbs energy of an ideal gas mixture, ๐บ๐‘–๐‘” = ๐ป๐‘–๐‘” โˆ’ ๐‘‡๐‘†๐‘–๐‘”; the parallel relation for partial properties is าง๐บ๐‘– ๐‘–๐‘” = เดฅ๐ป๐‘– ๐‘–๐‘” โˆ’ ๐‘‡ าง๐‘†๐‘– ๐‘–๐‘” าง๐บ๐‘– ๐‘–๐‘” = เดฅ๐ป๐‘– ๐‘–๐‘” โˆ’ ๐‘‡ าง๐‘†๐‘– ๐‘–๐‘” is combined with molar enthalpy and molar entropy relations: าง๐บ๐‘– ๐‘–๐‘” = ๐ป๐‘– ๐‘–๐‘” โˆ’ ๐‘‡(๐‘†๐‘– ๐‘–๐‘” โˆ’ ๐‘…๐‘™๐‘›๐‘ฆ๐‘–) าง๐บ๐‘– ๐‘–๐‘” = ๐ป๐‘– ๐‘–๐‘” โˆ’ ๐‘‡๐‘†๐‘– ๐‘–๐‘” + ๐‘…๐‘‡๐‘™๐‘›๐‘ฆ๐‘– ๐๐’Š ๐’Š๐’ˆ โ‰ก เดฅ๐‘ฎ๐’Š ๐’Š๐’ˆ = ๐‘ฎ๐’Š๐’ˆ + ๐‘น๐‘ป๐’๐’๐’š๐’Š Solutions Thermodynamics Theory | 41 The Summability Relation: ๐‘ด =เท ๐’Š ๐’™๐’Š เดฅ๐‘ด๐’Š ๐‘ฏ๐’Š๐’ˆ =ฯƒ๐’Š๐’š๐’Š๐‘ฏ๐’Š ๐’Š๐’ˆ ๐‘บ๐’Š๐’ˆ =เท ๐’Š ๐’š๐’Š ๐‘บ๐’Š ๐’Š๐’ˆ โˆ’ ๐‘นเท ๐’Š ๐’š๐’Š ๐’๐’ ๐’š๐’Š ๐‘ฎ๐’Š๐’ˆ = ฯƒ๐’Š๐’š๐’Š ๐‘ฎ๐’Š ๐’Š๐’ˆ + ๐‘น๐‘ปฯƒ๐’Š๐’š๐’Š ๐’๐’ ๐’š๐’Š Molar Change of Mixing: ๐šซ๐‘ด = ๐‘ดโˆ’ฯƒ๐’Š๐‘ด๐’Š ๐šซ๐‘ฏ๐’Š๐’ˆ = ๐šซ๐‘ผ๐’Š๐’ˆ = ๐šซ๐‘ฝ๐’Š๐’ˆ = ๐ŸŽ ๐šซ๐‘บ๐’Š๐’ˆ = โˆ’๐‘นฯƒ๐’Š๐’š๐’Š ๐’๐’ ๐’š๐’Š ๐šซ๐‘ฎ๐’Š๐’ˆ = ๐‘น๐‘ปฯƒ๐’Š๐’š๐’Š ๐’๐’ ๐’š๐’Š Solutions Thermodynamics Applications | 42 SOLUTIONS THERMODYNAMICS APPLICATIONS FUGACITY AND ACTIVITY CONCEPTS When the equation โˆ†๐บ = ๐‘›๐‘…๐‘‡๐‘™๐‘› ๐‘ƒ2 ๐‘ƒ1 (ideal gas and at constant temperature) is applied to real gases, particularly at higher pressures, it is found that the change in Gibbs free energy is not reproduced by this simple relation. In cases of non-ideal behavior, V is no longer given by ๐‘›๐‘…๐‘‡ ๐‘ƒ but by some more complicated function of the pressure Fugacity and Fugacity Coefficient Fugacity โ€“ a quantitative measure of escaping tendency of a substance from a particular state (a kind of pressure). Consider the property relation: ๐‘‘๐บ = ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡ ๐‘‘๐บ = ๐‘…๐‘‡ ๐‘ƒ ๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡ Integration at constant T gives: ๐บ = ๐‘…๐‘‡๐‘™๐‘›๐‘ƒ + ฮ“(๐‘‡) where ฮ“(๐‘‡)= integration constant dependent only on the temperature and the nature of the substance For a pure species i in the ideal gas state: ๐บ๐‘– ๐‘–๐‘” = ๐‘…๐‘‡๐‘™๐‘›๐‘ƒ + ฮ“๐‘–(๐‘‡) For a real fluid species i: ๐‘ฎ๐’Š = ๐‘น๐‘ป๐’๐’๐’‡๐’Š + ๐šช๐’Š(๐‘ป) where ๐‘“๐‘– is the fugacity Subtracting the two equation results to ๐บ๐‘– โˆ’ ๐บ๐‘– ๐‘–๐‘” = ๐‘…๐‘‡๐‘™๐‘› ๐‘“๐‘– ๐‘ƒ Where: ๐บ๐‘– โˆ’ ๐บ๐‘– ๐‘–๐‘” = ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘‘๐‘ข๐‘Ž๐‘™ ๐บ๐‘–๐‘๐‘๐‘  ๐‘’๐‘›๐‘’๐‘Ÿ๐‘”๐‘ฆ, ๐บ๐‘– ๐‘… ๐‘“๐‘– ๐‘ƒ โ‰ก โˆ…๐‘– = ๐‘“๐‘ข๐‘”๐‘Ž๐‘๐‘–๐‘ก๐‘ฆ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก, ๐‘๐‘ข๐‘Ÿ๐‘’ ๐‘ ๐‘๐‘’๐‘๐‘–๐‘’๐‘  ๐‘–, ๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘™๐‘’๐‘ ๐‘  Residual Property โ€“ is the difference of property of the real substance from the ideal gas at same temperature and pressure ๐‘€๐‘… โ‰ก ๐‘€ โˆ’๐‘€๐‘–๐‘” Solutions Thermodynamics Applications | 45 (1) Calculate ๏ง1 and ๏ง2 using the modified Raoultโ€™s Law ๐œธ๐’Š = ๐’š๐’Š๐‘ท ๐’™๐’Š๐‘ท๐’Š ๐’”๐’‚๐’•๐’ (2) Calculate the value of ๐‘ฎ ๐‘ฌ ๐‘น๐‘ป and ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป ๐‘ฎ๐‘ฌ ๐‘น๐‘ป = ๐’™๐Ÿ๐’๐’๐œธ๐Ÿ + ๐’™๐Ÿ๐’๐’๐œธ๐Ÿ ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป = ๐Ÿ ๐’™๐Ÿ๐’™๐Ÿ (๐’™๐Ÿ๐’๐’๐œธ๐Ÿ + ๐’™๐Ÿ๐’๐’๐œธ๐Ÿ) (3) Plot ๐’๐’๐œธ๐Ÿ, ๐’๐’๐œธ๐Ÿ, ๐‘ฎ๐‘ฌ ๐‘น๐‘ป , and ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป versus ๐’™๐Ÿ LIQUID PHASE PROPERTIES FROM VLE DATA Determination of ๏งi from Experimental VLE Data Reduction and Margules Equation Margules Equation: ๐‘ฎ๐‘ฌ ๐‘น๐‘ป = (๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ)๐’™๐Ÿ๐’™๐Ÿ Multiplying the equation by n and converting all mole fractions to moles, the right side ๐‘ฅ1 is replaced by ๐‘›1 ๐‘›1+๐‘›2 and ๐‘ฅ2 by ๐‘›2 ๐‘›1+๐‘›2 . With ๐‘› = ๐‘›1 + ๐‘›2 , this gives: ๐’๐‘ฎ๐‘ฌ ๐‘น๐‘ป = (๐‘จ๐Ÿ๐Ÿ๐’๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’๐Ÿ) ๐’๐Ÿ๐’๐Ÿ (๐’๐Ÿ+๐’๐Ÿ)๐Ÿ Activity Coefficients from Margules Correlation The Margules equation was developed by the data reduction method. Of the data sets of points shown in the graph of liquid-phase properties and their correlation, the ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป vs ๐’™๐Ÿ closely conform to a linear equation. Consider that the linear relation is given by the equation: ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป = ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ (Margules Equation) Alternative equation: ๐‘ฎ ๐‘ฌ ๐‘น๐‘ป = (๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ)๐’™๐Ÿ๐’™๐Ÿ where A21 and A12 are constants (Margules parameters). The linear correlation of Margules Equation: ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป = ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป = ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ(๐Ÿ โˆ’ ๐’™๐Ÿ) ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป = ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ โˆ’ ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป = ๐‘จ๐Ÿ๐Ÿ โˆ’ ๐‘จ๐Ÿ๐Ÿ ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ ๐‘ฆ = ๐‘š๐‘ฅ + ๐‘ ๐‘ฆ = ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป ๐‘š = ๐‘จ๐Ÿ๐Ÿ โˆ’ ๐‘จ๐Ÿ๐Ÿ ๐‘ = ๐‘จ๐Ÿ๐Ÿ ๐‘™๐‘›๐›พ1 = ๐‘ฅ2 2[๐ด12 + 2 ๐ด21 โˆ’ ๐ด12 ๐‘ฅ1] ๐‘™๐‘›๐›พ2 = ๐‘ฅ1 2[๐ด21 + 2 ๐ด12 โˆ’ ๐ด21 ๐‘ฅ2] Solutions Thermodynamics Applications | 46 Differentiating with respect to ๐’๐Ÿ: ๐(๐’๐‘ฎ๐‘ฌ/๐‘น๐‘ป) ๐๐’๐Ÿ ๐‘ท,๐‘ป,๐’๐Ÿ = ๐’๐Ÿ (๐‘จ๐Ÿ๐Ÿ๐’๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’๐Ÿ) ๐Ÿ (๐’๐Ÿ+๐’๐Ÿ)๐Ÿ โˆ’ ๐Ÿ๐’๐Ÿ (๐’๐Ÿ+๐’๐Ÿ)๐Ÿ‘ + ๐’๐Ÿ๐’๐Ÿ (๐’๐Ÿ+๐’๐Ÿ)๐Ÿ ๐‘™๐‘›๐›พ1 = ๐(๐’๐‘ฎ๐‘ฌ/๐‘น๐‘ป) ๐๐’๐Ÿ ๐‘ท,๐‘ป,๐’๐Ÿ = ๐’๐Ÿ (๐‘จ๐Ÿ๐Ÿ๐’๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’๐Ÿ) ๐Ÿ (๐’๐Ÿ+๐’๐Ÿ) ๐Ÿ โˆ’ ๐Ÿ๐’๐Ÿ (๐’๐Ÿ+๐’๐Ÿ) ๐Ÿ‘ + ๐’๐Ÿ๐’๐Ÿ (๐’๐Ÿ+๐’๐Ÿ) ๐Ÿ Reconversion of the ๐‘›๐‘– to ๐‘ฅ๐‘– (๐‘›1 = ๐‘›๐‘ฅ1; ๐‘›2 = ๐‘›๐‘ฅ2) gives: ๐‘™๐‘›๐›พ1 = ๐’™๐Ÿ (๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ๐’๐’™๐Ÿ)(๐Ÿ โˆ’ ๐Ÿ๐’™๐Ÿ) + ๐‘จ๐Ÿ๐Ÿ๐’™๐Ÿ Further reduction, noting that ๐‘ฅ2 = 1 โˆ’ ๐‘ฅ1, leads to: ๐’๐’๐œธ๐Ÿ = ๐’™๐Ÿ ๐Ÿ[๐‘จ๐Ÿ๐Ÿ + ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โˆ’ ๐‘จ๐Ÿ๐Ÿ ๐’™๐Ÿ] And similarly: ๐’๐’๐œธ๐Ÿ = ๐’™๐Ÿ ๐Ÿ[๐‘จ๐Ÿ๐Ÿ + ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โˆ’ ๐‘จ๐Ÿ๐Ÿ ๐’™๐Ÿ] For limiting conditions of infinite dilution, they become ๐’๐’๐œธ๐Ÿ โˆž = ๐‘จ๐Ÿ๐Ÿ(๐’™๐Ÿ = ๐ŸŽ) and ๐’๐’๐œธ๐Ÿ โˆž = ๐‘จ๐Ÿ๐Ÿ(๐’™๐Ÿ = ๐ŸŽ) Thermodynamic Consistency If the experimental data are inconsistent with the Gibbs/Duhem equation, then the data are incorrect due to systematic error in the data. Because correlating equations for GE/RT impose consistency on derived activity coefficient, no such correlation exists that can precisely reproduce P-x1-y1 data that are inconsistent. Our purpose now is to develop a simple test for consistency with respect to the Gibbs/Duhem equation of a P-x1-y1 data set. Consider the summability and Gibbs/Duhem equations for a binary system ๐‘ฎ๐‘ฌ ๐‘น๐‘ป = ๐’™๐Ÿ๐’๐’๐œธ๐Ÿ + ๐’™๐Ÿ๐’๐’๐œธ๐Ÿ ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ + ๐’™๐Ÿ๐’…๐’๐’๐œธ๐Ÿ = ๐ŸŽ ๐’… ๐‘ฎ๐‘ฌ/๐‘น๐‘ป ๐’…๐’™๐Ÿ = ๐’๐’๐œธ๐Ÿ โˆ’ ๐’๐’๐œธ๐Ÿ + ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ + ๐’™๐Ÿ๐’…๐’๐’๐œธ๐Ÿ (correlation) ๐’… ๐‘ฎ๐‘ฌ/๐‘น๐‘ป โˆ— ๐’…๐’™๐Ÿ = ๐’๐’๐œธ๐Ÿ โˆ— โˆ’ ๐’๐’๐œธ๐Ÿ โˆ— + ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ โˆ— + ๐’™๐Ÿ๐’…๐’๐’๐œธ๐Ÿ โˆ— (experimental) ๐’… ๐‘ฎ๐‘ฌ/๐‘น๐‘ป ๐’…๐’™๐Ÿ โˆ’ ๐’… ๐‘ฎ๐‘ฌ/๐‘น๐‘ป โˆ— ๐’…๐’™๐Ÿ = ๐’๐’ ๐œธ๐Ÿ ๐œธ๐Ÿ โˆ’ ๐’๐’ ๐œธ๐Ÿ โˆ— ๐œธ๐Ÿโˆ— โˆ’ ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ โˆ— ๐’…๐’™๐Ÿ + ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ โˆ— ๐’…๐’™๐Ÿ The differences between like terms are residuals, which may be represented by a ๏ค notation. The preceding equation then becomes: ๐’…๐œน ๐‘ฎ๐‘ฌ/๐‘น๐‘ป ๐’…๐’™๐Ÿ = ๐œน๐’๐’ ๐œธ๐Ÿ ๐œธ๐Ÿ โˆ’ ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ โˆ— ๐’…๐’™๐Ÿ + ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ โˆ— ๐’…๐’™๐Ÿ Solutions Thermodynamics Applications | 47 If a data set is reduced so as to make the residuals in ๐‘ฎ๐‘ฌ/๐‘น๐‘ป scatter about zero, then the derivative ๐’…๐œน ๐‘ฎ๐‘ฌ/๐‘น๐‘ป ๐’…๐’™๐Ÿ is effectively zero, reducing the preceding equation to: ๐œน๐’๐’ ๐œธ๐Ÿ ๐œธ๐Ÿ = ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ โˆ— ๐’…๐’™๐Ÿ + ๐’™๐Ÿ ๐’…๐’๐’๐œธ๐Ÿ โˆ— ๐’…๐’™๐Ÿ where ๐œน๐’๐’ ๐œธ๐Ÿ ๐œธ๐Ÿ is a direct measure of deviation from the Gibbs/Duhem Equation Average values of the residuals < 0.03 high degree of consistency < 0.10 acceptable > 0.10 not acceptable, data contain significant error Van Laar Equation ๐’™๐Ÿ๐’™๐Ÿ ๐‘ฎ๐‘ฌ/๐‘น๐‘ป = ๐’™๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ + ๐’™๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ = ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐‘ฎ๐‘ฌ ๐’™๐Ÿ๐’™๐Ÿ๐‘น๐‘ป = ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ + ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ The activity coefficients implied by this equation are: ๐‘™๐‘›๐›พ1 = ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐Ÿ + ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ โˆ’๐Ÿ ๐‘™๐‘›๐›พ2 = ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐Ÿ + ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ โˆ’๐Ÿ When ๐‘ฅ1 = 0, ๐’๐’๐œธ๐Ÿโˆž = ๐‘จ๐Ÿ๐Ÿ โ€ฒ ; when ๐‘ฅ2 = 0, ๐’๐’๐œธ๐Ÿโˆž = ๐‘จ๐Ÿ๐Ÿ โ€ฒ Replacing x2 by 1-x1, the van Laar Equation becomes ๐’™๐Ÿ๐’™๐Ÿ ๐‘ฎ๐‘ฌ/๐‘น๐‘ป = ๐’™๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ + ๐’™๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ = ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ โˆ’ ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’™๐Ÿ + ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’Ž = ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ โˆ’ ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’ƒ = ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐’Ž+ ๐’ƒ = ๐Ÿ ๐‘จ๐Ÿ๐Ÿ โ€ฒ ๐‘จ๐Ÿ๐Ÿ โ€ฒ = ๐Ÿ ๐’ƒ ๐‘จ๐Ÿ๐Ÿ โ€ฒ = ๐Ÿ ๐’Ž+๐’ƒ Solutions Thermodynamics Applications | 50 (10)Calculate for the Excess Gibbโ€™s Energy ๐บ ๐ธ ๐‘…๐‘‡ = ๐‘ฅ1๐‘™๐‘›๐›พ1 + ๐‘ฅ2๐‘™๐‘›๐›พ2 using the new calculated values (11)Calculate for the Residual Gibbโ€™s Energy by subtracting the calculated from the experimental and get the average values Margules Van Laar x1 Calculated lnฮณ1 Calculated lnฮณ2 Calculated ฮณ1 Calculated ฮณ2 Calculated lnฮณ1 Calculated lnฮณ2 Calculated ฮณ1 Calculated ฮณ2 0.0000 0.3844 0.0000 1.4687 1.0000 0.4109 1.5082 0.0895 0.2908 0.0043 1.3374 1.0043 0.2912 0.0054 1.3380 1.0054 0.1981 0.1993 0.0195 1.2205 1.0197 0.1896 0.0221 1.2087 1.0224 0.3193 0.1225 0.0461 1.1303 1.0472 0.1142 0.0480 1.1210 1.0492 0.4232 0.0749 0.0740 1.0778 1.0768 0.0712 0.0733 1.0738 1.0760 0.5119 0.0457 0.0996 1.0468 1.1047 0.0455 0.0957 1.0466 1.1004 0.6096 0.0236 0.1275 1.0239 1.1360 0.0259 0.1206 1.0262 1.1282 0.7135 0.0095 0.1548 1.0096 1.1674 0.0124 0.1468 1.0125 1.1581 0.7934 0.0037 0.1725 1.0037 1.1883 0.0059 0.1665 1.0059 1.1812 0.9102 0.0003 0.1906 1.0003 1.2100 0.0010 0.1944 1.0010 1.2145 1.0000 0.0000 0.1963 1.0000 1.2169 0.2149 1.2398 Margules Van Laar x1 Calculated GE/RT Residual GE/RT Calculated GE/RT Residual GE/RT 0.0000 0.00000 0.00000 0.00000 0.0000 0.0895 0.02995 -0.00177 0.03096 -0.0008 0.1981 0.05514 0.00081 0.05529 0.0010 0.3193 0.07049 0.00259 0.06918 0.0013 0.4232 0.07440 0.00198 0.07238 0.0000 0.5119 0.07199 0.00118 0.07000 -0.0008 0.6096 0.06419 0.00071 0.06286 -0.0006 0.7135 0.05114 0.00036 0.05089 0.0001 0.7934 0.03855 0.00011 0.03908 0.0007 0.9102 0.01743 -0.00112 0.01835 -0.0002 1.0000 0.00000 0.00000 0.00000 0.0000 Average 0.00044 Average 0.00005 (12) Get the residual ๐‘™๐‘›๐›พ1 and ๐‘™๐‘›๐›พ2 by subtracting them from the experimental. (13)To obtain ๐›ฟ๐‘™๐‘› ๐›พ1 ๐›พ2 , subtract the residual ๐‘™๐‘›๐›พ1 with the ๐‘™๐‘›๐›พ2 residual. Get the average values Solutions Thermodynamics Applications | 51 (14) To get the new calculated pressures, Use Daltonโ€™s Law of Partial Pressures together with modified Raoultโ€™s Law, ๐‘ƒ = ๐‘ฅ1๐›พ1๐‘ƒ1 ๐‘ ๐‘Ž๐‘ก + ๐‘ฅ2๐›พ2๐‘ƒ2 ๐‘ ๐‘Ž๐‘ก (15) ๐‘ฆ1 can be computed by ๐‘ฆ1 = ๐‘ฅ1๐‘ฆ1๐‘ƒ1 ๐‘ ๐‘Ž๐‘ก ๐‘ƒ Margules Van Laar x1 Residual lnฮณ1 Residual lnฮณ2 ๐œน๐’๐’ ๐œธ๐Ÿ ๐œธ๐Ÿ Residual lnฮณ1 Residual lnฮณ2 ๐œน๐’๐’ ๐œธ๐Ÿ ๐œธ๐Ÿ 0.0000 0.3844 0.0000 0.3844 0.4109 0.0000 0.4109 0.0895 0.0252 -0.0044 0.0296 0.0256 -0.0034 0.0290 0.1981 0.0268 -0.0056 0.0324 0.0171 -0.0030 0.0201 0.3193 0.0147 -0.0031 0.0177 0.0064 -0.0011 0.0076 0.4232 0.0060 -0.0010 0.0070 0.0023 -0.0017 0.0040 0.5119 0.0028 -0.0005 0.0033 0.0026 -0.0044 0.0070 0.6096 0.0008 0.0005 0.0003 0.0031 -0.0064 0.0095 0.7135 -0.0009 0.0036 -0.0045 0.0019 -0.0044 0.0064 0.7934 0.0004 -0.0010 0.0014 0.0026 -0.0070 0.0096 0.9102 0.0034 -0.0465 0.0499 0.0040 -0.0428 0.0468 1.0000 0.0000 0.1963 -0.1963 0.0000 0.2149 -0.2149 Average 0.02957 Average 0.03054 Margules Van Laar x1 Calculated P Calculated y1 Calculated P Calculated y1 0.0000 12.3000 0.0000 12.3000 0.0000 0.0895 15.5676 0.2775 15.5815 0.2774 0.1981 18.7839 0.4645 18.7258 0.4615 0.3193 21.7925 0.5977 21.7025 0.5952 0.4232 24.1012 0.6830 24.0340 0.6824 0.5119 25.9704 0.7446 25.9411 0.7453 0.6096 27.9817 0.8050 27.9945 0.8065 0.7135 30.1105 0.8634 30.1522 0.8646 0.7934 31.7586 0.9049 31.8049 0.9056 0.9102 34.1967 0.9609 34.2231 0.9608 1.0000 36.0900 1.0000 36.0900 1.0000 Solutions Thermodynamics Applications | 52 From here we and the graph of thermodynamic consistency, we can see that the two models, Margules and van Laar do not deviate much from the experimental values. PROPERTY CHANGES OF MIXING For any ideal solution, the summability relation of partial properties is expressed as: ๐‘€๐‘–๐‘‘ = เท ๐‘– ๐‘ฅ๐‘– เดฅ๐‘€ ๐‘–๐‘‘ Applying the different properties G,S,V and H result to: ๐บ๐‘–๐‘‘ = ฯƒ๐‘– ๐‘ฅ๐‘– ๐บ๐‘– โˆ’ ๐‘…๐‘‡ฯƒ๐‘– ๐‘ฅ๐‘– ln ๐‘ฅ๐‘– ๐‘†๐‘–๐‘‘ = ฯƒ๐‘– ๐‘ฅ๐‘– ๐‘†๐‘– + ๐‘…ฯƒ๐‘– ๐‘ฅ๐‘– ln ๐‘ฅ๐‘– ๐‘‰๐‘–๐‘‘ = ฯƒ๐‘– ๐‘ฅ๐‘– ๐‘‰๐‘– ๐ป๐‘–๐‘‘ = ฯƒ๐‘– ๐‘ฅ๐‘– ๐ป๐‘– Recall that by definition, the expression of the excess property for any ideal solution is expressed as: ๐‘€๐ธ โ‰ก ๐‘€ โˆ’ ๐‘€๐‘–๐‘‘ Using this relation with the summability of ideal solutions, the excess properties can be written as ๐บ๐ธ = ๐บ โˆ’ ฯƒ๐‘– ๐‘ฅ๐‘– ๐บ๐‘– โˆ’ ๐‘…๐‘‡ฯƒ๐‘– ๐‘ฅ๐‘– ln ๐‘ฅ๐‘– ๐‘†๐ธ = ๐‘† โˆ’ ฯƒ๐‘– ๐‘ฅ๐‘– ๐‘†๐‘– + ๐‘…ฯƒ๐‘– ๐‘ฅ๐‘– ln ๐‘ฅ๐‘– ๐‘‰๐ธ = ๐‘‰ โˆ’ ฯƒ๐‘– ๐‘ฅ๐‘– ๐‘‰๐‘– ๐ป๐ธ = ๐ป โˆ’ ฯƒ๐‘– ๐‘ฅ๐‘– ๐ป๐‘–
Docsity logo



Copyright ยฉ 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved