Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Circuit and microelectronic devices formula sheet, Cheat Sheet of Microelectronic Circuits

Formula sheet with parameter values, diffusions, electrostatics, uniform doping, full ionization, flow problems and CMOS scaling rules.

Typology: Cheat Sheet

2021/2022
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 02/07/2022

anala
anala 🇺🇸

4.3

(14)

12 documents

1 / 9

Toggle sidebar
Discount

On special offer

Related documents


Partial preview of the text

Download Circuit and microelectronic devices formula sheet and more Cheat Sheet Microelectronic Circuits in PDF only on Docsity! 1 6.012 Microelectronic Devices and Circuits Formula Sheet for the Final Exam, Fall 2009 Parameter Values: Periodic Table: ! q = 1.6x10 "19 Coul # o = 8.854x10 "14 F/cm # r,Si = 11.7, #Si $10 "12 F/cm n i Si@R.T[ ] $10 10 cm "3 kT /q $ 0.025V ; kT /q( ) ln10 $ 0.06V 1µm =1x10 "4 cm ! III IV V B C N Al Si P Ga Ge As In Sn Sb Drift/Diffusion: Electrostatics: ! Drift velocity : s x = ±µm Ex Conductivity : " = q µen + µh p( ) Diffusion flux : Fm = #Dm $Cm $x Einstein relation : Dm µm = kT q ! " dE(x) dx = #(x) E(x) = 1 " #(x)dx$ % d&(x) dx = E(x) &(x) = % E(x)dx$ %" d 2&(x) dx 2 = #(x) &(x) = % 1 " #(x)dxdx$$ The Five Basic Equations: ! Electron continuity : "n(x, t) "t # 1 q "Je (x, t) "x = gL (x, t) # n(x,t) $ p(x,t) # ni 2[ ]r(T) Hole continuity : "p(x, t) "t + 1 q "Jh (x, t) "x = gL (x, t) # n(x,t) $ p(x,t) # ni 2[ ]r(T) Electron current density : Je (x, t) = qµen(x, t)E(x,t) + qDe "n(x,t) "x Hole current density : Jh (x, t) = qµh p(x, t)E(x,t) # qDh "p(x,t) "x Poisson's equation : "E(x,t) "x = q % p(x, t) # n(x, t) + Nd +(x) # Na #(x)[ ] Uniform doping, full ionization, TE ! n - type, Nd >> Na no " Nd # Na $ ND, po = ni 2 no, %n = kT q ln ND ni p - type, Na >> Nd po " Na # Nd $ NA , no = ni 2 po , %p = # kT q ln NA ni Uniform optical excitation, uniform doping ! n = no + n' p = po + p' n' = p' dn' dt = gl (t) " po + no + n'( )n'r Low level injection, n',p'<< po +no : dn' dt + n' #min = gl (t) with #min $ por( ) "1 2 Flow problems (uniformly doped quasi-neutral regions with quasi-static excitation and low level injection; p-type example): ! Minority carrier excess : d 2 n'(x) dx 2 " n'(x) Le 2 = " 1 De gL (x) Le # De$ e Minority carrier current density : Je (x) % qDe dn'(t) dx Majority carrier current density : Jh (x) = JTot " Je (x) Electric field : Ex (x) % 1 qµh po Jh (x) + Dh De Je (x) & ' ( ) * + Majority carrier excess : p'(x) % n'(x) + , q dEx (x) dx Short base, infinite lifetime limit: ! Minority carrier excess : d 2 n'(x) dx 2 " # 1 De gL (x), n'(x) " # 1 De gL (x)dxdx$$ Non-uniformly doped semiconductor sample in thermal equilibrium ! d 2"(x) dx 2 = q # ni e q" (x ) kT $ e$q" (x ) kT[ ] $ Nd (x) $ Na (x)[ ]{ } no(x) = nie q" (x ) kT , po(x) = nie $q" (x ) kT , po(x)no(x) = ni 2 Depletion approximation for abrupt p-n junction: ! "(x) = 0 #qNAp qNDn 0 for for for for x < #xp #xp < x < 0 0 < x < xn xn < x $ % & & ' & & NApxp = NDnxn (b ) (n #(p = kT q ln NDnNAp ni 2 w(vAB ) = 2*Si (b # vAB( ) q NAp + NDn( ) NApNDn Epk = 2q (b # vAB( ) *Si NApNDn NAp + NDn( ) qDP (vAB ) = #AqNApxp vAB( ) = #A 2q*Si (b # vAB( ) NApNDn NAp + NDn( ) Ideal p-n junction diode i-v relation: ! n(-xp ) = ni 2 NAp e qvAB / kT , n'(-xp ) = ni 2 NAp e qvAB / kT "1( ); p(xn ) = ni 2 NDn e qvAB / kT , p'(xn ) = ni 2 NDn e qvAB / kT "1( ) iD = Aqni 2 Dh NDnwn,eff + De NApwp,eff # $ % & ' ( eqv AB / kT -1[ ] wm,eff = wm " xm if Lm >> wm Lm tanh wm " xm( ) Lm[ ] if Lm ~ wm Lm if Lm << wm ) * + , + qQNR,p -side = Aq n'(x)dx, -wp -x p - qQNR ,n -side = Aq p'(x)dx, Note : p'(x) . n'(x) in QNRs xn wn - 5 Switching times and gate delay (full velocity saturation): ! "Ch arg e = "Disch arg e = CLVDD WminssatCox * VDD #VTn[ ] CL = n WnLn +WpLp( )Cox * = 2nWminLminCox * assumes ssat ,e = ssat,h "Min.Cycle = "Ch arg e + "Disch arg e = 4nLminVDD ssat VDD #VTn[ ] Dynamic power dissipation per gate (full velocity saturation): ! Pdyn@ f max = CLVDD 2 f max " CLVDD 2 #Min.Cycle " ssatWmin $oxVDD VDD %VTn[ ] tox PDdyn@ f max = Pdyn@ f max InverterArea " Pdyn@ f max W min L min " ssat$oxVDD VDD %VTn[ ] toxL 2 Static power dissipation per gate ! Pstatic =VDD ID,off "VDD W min L min µe Vt 2 #SiqNA 2 VBS e $VT{ } nVt PDstatic = Pstatic Inverter Area % VDD L min 2 µe Vt 2 #SiqNA 2 VBS e $VT{ } nVt CMOS Scaling Rules - Constant electric field scaling ! Scaled Dimensions : Lmin " Lmin s W "W s tox " tox s NA " sNA Scaled Voltages : VDD "VDD s VBS "VBS s Consequences : Cox * " sCox * K" sK VT "VT s # " # s Pdyn " Pdyn s 2 PDdyn@ fmax " PDdyn@ fmax PDstatic " s 2 e s$1( )VT snVt PDstatic Device transit times ! Short Base Diode transit time : " b = w B 2 2Dmin,B = w B 2 2µmin,BVthermal Channel transit time, MOSFET w.o. velocity saturation : " Ch = 2 3 L 2 µ Ch V GS #V T Channel transit time, MOSFET with velocity saturation : " Ch = L s sat 6 Small Signal Linear Equivalent Circuits: • p-n Diode (n+-p doping assumed for Cd) ! gd " #iD #vAB Q = q kT IS e qVAB / kT $ q ID kT , Cd = Cdp + Cdf , where Cdp (VAB ) = A q%SiNAp 2 &b 'VAB( ) , and Cdf (VAB ) = q ID kT wp ' xp[ ] 2 2De = gd( d with ( d " wp ' xp[ ] 2 2De • BJT (in FAR) ! gm = q kT "oIBS e qVBE kT 1+ #VCE[ ] $ q IC kT , g% = gm "o = q IC "o kT go = "oIBS e qVBE kT +1[ ] # $ # IC or $ IC VA & ' ( ) * + C% = gm, b + B-E depletion cap. with , b - wB 2 2De , Cµ : B-C depletion cap. • MOSFET (strong inversion; in saturation, no velocity saturation) ! gm = K VGS "VT (VBS )[ ] 1+ #VDS[ ] $ 2K ID go = K 2 VGS "VT (VBS )[ ] 2 # $ # ID or $ ID VA % & ' ( ) * gmb = +gm = + 2K ID with + , " -VT -vBS Q = 1 Cox * .SiqNA q/p "VBS Cgs = 2 3 W LCox * , Csb ,Cgb ,Cdb : depletion capacitances Cgd =W Cgd * , where Cgd * is the G-D fringing and overlap capacitance per unit gate length (parasitic) • MOSFET (strong inversion; in saturation with full velocity saturation) ! gm = W ssat Cox * , go = " ID = ID VA , gmb = #gm with # $ % &VT &vBS Q = 1 Cox * 'SiqNA q(p %VBS Cgs =W LCox * , Csb ,Cgb ,Cdb : depletion capacitances Cgd =W Cgd * , where Cgd * is the G-D fringing and overlap capacitance per unit gate length (parasitic) • MOSFET (operated sub-threshold; in forward active region; only valid for vbs = 0) ! gm = q ID n kT , go = " ID = ID VA Cgs =W L Cox # 1+ 2Cox #2 VGS $VFB( ) %SiqNA , Cdb : drain region depletion capacitance Cgd =W Cgd * , where Cgd * is the G-D fringing and overlap capacitance per unit gate length (parasitic) 7 Single transistor analog circuit building block stages Note: gl ≡ gsl + gel,; gl’ ≡ go + gl ! MOSFET Voltage gain, Av Current gain, Ai Input resistance, Ri Output resistance, Ro Common source " gm go + gl[ ] = "gmrl '( ) # # ro = 1 go $ % & ' ( ) Common gate * gm + gmb[ ] rl ' *1 * 1 gm + gmb[ ] * ro 1+ gm + gmb + go[ ] gt + , - . / 0 Source follower gm[ ] gm + go + gl[ ] *1 # # 1 gm + go + gl[ ] * 1 gm Source degeneracy (series feedback) * " rl RF # # * ro Shunt feedback " gm "GF[ ] go +GF[ ] * "gmRF " gl GF 1 GF 1" Av[ ] ro ||RF = 1 go +GF[ ] $ % & ' ( ) ! BIPOLAR Voltage gain, Av Current gain, Ai Input resistance, Ri Output resistance, Ro Common emitter " gm go + gl[ ] # "gmrl '( ) " $ gl go + gl[ ] r% ro = 1 go & ' ( ) * + Common base gm go + gl[ ] # gmrl '( ) #1 # r% $ +1[ ] # $ +1[ ]ro Emitter follower gm + g%[ ] gm + g% + go + gl[ ] #1 $ gl go + gl[ ] # $ r% + $ +1[ ]rl ' rt + r% $ +1[ ] Emitter degeneracy # " rl RF # $ # r% + $ +1[ ]RF # ro Shunt feedback " gm "GF[ ] go +GF[ ] # "gmRF " gl GF 1 g% +GF 1" Av[ ] ro ||RF = 1 go +GF & ' ( ) * + OCTC/SCTC Methods for Estimating Amplifier Bandwidth ! OCTC estimate of " HI : " HI # " i[ ] $1 i % & ' ( ) * + -1 = R i C i i % & ' ( ) * + -1 with Ri defined as the equivalent resistance in parallel with Ci with all other parasitic device capacitors (Cπ 's, Cµ's, Cgs 's, Cgd 's, etc.) open circuited. ! SCTC estimate of "LO: "LO # " j j $ = RjC j[ ] %1 j $ with Rj defined as the equivalent resistance in parallel with Cj with all other baising and coupling capacitors (CΙ 's, CO's, CE's, CS's, etc.) short circuited.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved