Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

COMPLEX ANAYLSIS, Assignments of Music

QuestionsdnndwekddddQuestionsdnndwekddddQuestionsdnndwekddddQuestionsdnndwekdddd

Typology: Assignments

2019/2020

Uploaded on 10/13/2020

amy-brickwood
amy-brickwood 🇬🇧

2 documents

1 / 17

Toggle sidebar

Related documents


Partial preview of the text

Download COMPLEX ANAYLSIS and more Assignments Music in PDF only on Docsity! math2069 Complex Analysis Problems 2017 1 The University of New South Wales School of Mathematics and Statistics MATH2069 MATHEMATICS 2A: COMPLEX ANAYLSIS Questions marked [K] are key or core questions. The more difficult questions are marked [H]. Reference is made to four textbooks: Spiegel: M.R. Spiegel, Complex Variables (McGraw-Hill); Church5: R.V. Churchill & J.W. Brown, Complex Variables & Applications, (5th ed.) (McGraw-Hill). Church6: J.W. Brown and R.V. Churchill, Complex Variables & Applications (6th ed.) (McGraw-Hill) Church7: J.W. Brown and R.V. Churchill, Complex Variables & Applications (7th ed.) (McGraw-Hill) The purposes of this set of problems are as follows: 1. To provide common tutorial material; 2. To specify the course in great detail; 3. To serve as a guide to the recommended textbook and its predecessors. 1 The Complex Plane Note: This introduction to complex numbers includes: Basic topology of the complex plane; Functions of a complex variable; Functions as mappings. References: Spiegel chapter 1 also page 200. Church5 chapter 1 also pages 28–31, 207–212. Church6 chapter 1 also pages 28–31, 245–249. Church7 chapter 1 also pages 33–42, 299–305. 1 Evaluate: a. (2 + 3i)3; b. (2 + 7i)/(3− 2i); c. (2 + 3i)3/(1 + 3i)2; d. < ( (3− 7i)4 ) ; e. = ( (3− 7i)4 ) ; f. |3− 7i|4. [K]2 Sketch the regions in the complex plane specified by: a. 2 ≤ |z − i| ≤ 3; b. 2 < |z − i| < 3; c. =(z) > 0; d. |z + 2|+ |z| = 3; e. |z + 2|+ |z| < 3; f. |z + 2|+ |z| > 3. [K]3 Show that if |z| = 10 then 497 ≤ |z3 + 5iz2 − 3| ≤ 1503. 4 a. Express the following complex numbers 1; −1; √ 3 + i; −7 + 7i in the polar form r(cos θ + i sin θ). b. Verify (−1 + i)7 = −8(1 + i) both directly and using the polar form. [K]5 a. Find all solutions of z5 + i = 0. b. Factorize z8 − 15z4 − 16 over C and hence over R. c. Find the real factorization of z4 + 4. math2069 Complex Analysis Problems 2017 2 6 a. Suppose both c and (1 + ic)5 are real (c 6= 0). Show that c = ± √ 5± 2 √ 5. Now use another method to show that either c = ± tan 36◦ or c = ± tan 72◦. b. Suppose α/(α2 + 1) is real, where α = a+ ib, b 6= 0, α 6= ±i. Show that αᾱ = 1. 7 Let z and w be complex numbers with |z| < 1, |w| < 1. a. Show that |1− zw|2 − |z − w|2 = (1− |z|2)(1− |w|2). b. Hence or otherwise prove that |(z − w)/(1− zw)| < 1. [H]8 a. Show that for 0 < θ < 2π: < ( 1− ei(n+1)θ 1− eiθ ) = 1 2 + sin(n+ 12)θ 2 sin θ2 . b. Show that for 0 < θ < 2π: = ( 1− ei(n+1)θ 1− eiθ ) = 1 2 cot θ 2 − cos(n+ 12)θ 2 sin θ2 . c. Use the results above to find C = 1 + cos θ + cos 2θ + · · ·+ cosnθ and S = sin θ + sin 2θ + · · ·+ sinnθ. [K]9 Are the following regions in the plane (1) open (2) connected and (3) domains? a. the real numbers; b. the first quadrant including its boundary; c. the first quadrant excluding its boundary; d. the complement of the unit circle; e. the six regions of question 2; f. C \ Z = {z ∈ C : z /∈ Z}. 10 a. Show that |z1 + z2|2 + |z1 − z2|2 = 2|z1|2 + 2|z2|2 for all z1 and z2 in C. b. Give a geometrical interpretation of this result. [K]11 The point 1 + i is rotated anticlockwise through π 6 about the origin. Find its image. [H]12 Show that the triangle in the complex plane whose vertices are the origin and the points w1 and w2 is equilateral if and only if w 2 1 + w 2 2 = w1w2. [H]13 Four distinct points including 0; 0, z1, z2, z3 lie on a circle. Show that the points 1 z1 , 1 z2 , 1 z3 are collinear, i.e. lie on a straight line. [K]14 Find (i.e. simplify in terms of real and imaginary parts x and y) and sketch the following sets a. {z ∈ C : <(z2) > 0}; b. {z ∈ C : <(z2) > 1}; c. {z ∈ C : < ( z z − 1 ) = 0}; d. {z ∈ C : = ( 1 z ) ≥ 1}. [K]15 Show the set of complex numbers z satisfying ∣∣∣∣ z + 12z + 3 ∣∣∣∣ = 1 is a circle and find its centre and radius. [K]16 Find the image of the following regions under the mapping w = z−1. a. x+ y = 4; b. |z − 1| = 1; c. |z − 1| ≤ 1, z 6= 0. math2069 Complex Analysis Problems 2017 5 [K]34 a. Explain why the function f defined by f(z) = (z2 + 1)/(z + 1) is analytic except for z = −1; b. Where is the function f defined by f(z) = (z7 + 1)/(z3 − 1) analytic? [H]35 Sketch some of the curves x2 − y2 = constant, 2xy = constant in the plane. In general, show that if the functions u : D → R and v : D → R, with D an open set in R2, satisfy the Cauchy-Riemann equations, then the curves u(x, y) = constant intersect the curves v(x, y) = constant orthogonally. [K]36 For each of the following functions u, defined as shown, determine which are harmonic in C ' R2. Find a harmonic conjugate if it exists: a. u(x, y) = x3 − 3xy2; b. u(x, y) = xex cos y − yex sin y; c. u(x, y) = coshx cos y; d. u(x, y) = x4 − 2x2y2 + y4; e. u(x, y) = 3x− 2xy. [K]37 For the following harmonic functions u : R2 → R, find a harmonic conjugate v : R2 → R for u and express the analytic function f = u+ iv : C→ C as a function of z alone. a. u(x, y) = y3 − 3yx2 + 2xy; b. u(x, y) = x3y − xy3; c. u(x, y) = e−y(x sinx+ y cos(x)); d. u(x, y) = sin(x) sinh(y) + xy. [The 2nd part for c. and d. will require some definitions from section 4.] 38 a. Assume that the function u given by u(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4, for a, b, c, d, e real constants, is harmonic on R2. Find the linear constraints this puts on a, b, c, d, e and show that u is a linear combination of the functions (x, y) 7−→ x4 − 6x2y2 + y4 and (x, y) 7−→ x3y − xy3. b. The real constants α, β are chosen so that the function u defined by u(x, y) = x3 + αx2y + βxy2 is harmonic on R2. Find α and β and determine a conjugate harmonic function, v, to u. [K]39 Show that the function u defined by u(x, y) = x+2 cos 2x cosh 2y is harmonic and find a harmonic conjugate v. Hence express the function f defined by f(z) = u(x, y)+ iv(x, y) as a function of z, where z = x+ iy. 4 Exponential, trigonometric and hyperbolic functions Note: This section includes the solution of trigonometric and hyperbolic equations References: Spiegel chapter 3 pages 34–36, 44–48. Church5 chapter 3 sections 22 – 25. Church6 chapter 3 sections 23 – 25. Church7 chapter 3 sections 28, 33, 34. 40 Express exp(3 + πi) in Cartesian form and show that exp(z + πi) = − exp(z) for all z ∈ C. [K]41 Find all solutions of the following equations: a. ez = e2−3i; b. ez = 2 + i √ 3; c. ez = −5i. math2069 Complex Analysis Problems 2017 6 42 Express the following complex numbers in the form a+ ib, for a and b real: a. sin i; b. cos(2− i); c. tan(1− i). [K]43 a. If z = x+ iy,with x and y real, show that | sin z|2 = sin2 x+ sinh2 y. b. Show that | cos z|2 − | sin z|2 = cos 2x. c. Show that | cos z|2 + | sin z|2 ≥ 1 with equality only if z is a real number. 44 For the mapping f(z) = sinh z, find and sketch the image of a. <(z) = c; b. =(z) = d; [H]c. {z ∈ C : <(z) > 0, 0 < =(z) < π/2}; [H]d. {z ∈ C : <(z) < 0, −π/2 ≤ =(z) ≤ π/2}. 45 Find all solutions z ∈ C of the following equations: a. cos z = cos 2; b. sin z = sin 2; c. cosh z = cosh 2; d. cos z = cosh 2; e. sin z = sinh 2; f. cosh z = sin 2. [K]46 Solve the following equations over C: a. cos z = −1; b. cos z = 2; c. cosh z = 2i e. sinh z = 4i; d. sin z = 2i; f. cos z + sin z = i. 5 The Principal Logarithm & Complex Exponents Note: The principal value logarithm is written Log. References: Spiegel chapter 2 pages 36, 46, 48. Church5 chapter 3 sections 26 – 29. Church6 chapter 3 sections 26 – 29. Church7 chapter 3 sections 29, 30 31, 32, 35 [K]47 Find log(z) and Log(z) for each of the following: a. z = 1; b. z = i; c. z = −3 + i. 48 Find a pair z1, z2 of complex numbers for which Log(z1) + Log(z2) = Log(z1z2) and find a pair z1, z2 of complex numbers for which Log(z1) + Log(z2) 6= Log(z1z2). [K]49 Where is the function f defined by f(z) = (z2 + 4)−1 Log(z + 2i) analytic? [K]50 Find exp Log(10i) and Log exp(10i) in Cartesian form. [K]51 Find the Cartesian forms of Log (( exp(34πi) )2) and 2 Log ( exp(34πi) ) . [K]52 Find the Cartesian form of each of the following: a. ii; b. p.v. ii; c. p.v. (1 + i√3 2 )−31−i;d. p.v. [(−1 + i)2]i. 53 Find all the values determined by (−1 − i)i. Give < ( p.v.(−1− i)i ) to 3 significant figures. 54 Determine the Cartesian form of all complex numbers given by iLog i. math2069 Complex Analysis Problems 2017 7 6 Arcs, Contour Integrals and Anti-Derivatives References: Spiegel chapter 4 pages 92–93, 98. Church5 chapter 4 sections 30 – 34. Church6 chapter 4 sections 30 – 35. Church7 chapter 4 sections 36 – 43 [K]55 Calculate I = ∫ C z dz where C is the straight line segment from z = i to z = 1 + 2i. [K]56 Let γ denote the boundary of the triangle with vertices 0, 1 and 1+i taken anticlockwise. Evaluate ∮ γ <(z) dz and ∮ γ z dz. [K]57 Evaluate ∫ γ z dz where a. γ is the straight line from −1 + 2i to 3 + 5i; b. γ is the upper semicircle of unit radius from −1 to 1. [K]58 Let Γ denote the semicircular contour in the upper half plane with centre 1 and radius 2 taken from 3 to −1. Evaluate ∫ Γ z dz and ∫ Γ z dz. [K]59 Let γ denote the anticlockwise contour consisting of the above semicircle taken with its base. Evaluate ∫ γ z dz and ∫ γ z dz. 60 Evaluate ∫ γ f(z) dz where z = x+ iy, with x and y real, and f is the given function: a. f(z) = 2x− 3iy, γ is the ellipse {cos t+ 2i sin t : 0 ≤ t ≤ 2π}; b. f(z) = x2, γ is the parabola y = 2x2 from x = 0 to x = 2; c. f(z) = x2, γ is the parabola y = 2x2 from x = 2 to x = 0; d. f(z) = z̄, γ is the ellipse x = a cos t, y = b sin t, for 0 ≤ t < 2π. [K]61 Show that if =(z) ≥ 0, then |eiz| ≤ 1. Now let R > 1 be a real constant. Deduce that ∣∣∣∣ eizz4 + 1 ∣∣∣∣ ≤ 1R4 − 1 for z on the semi-circle {z ∈ C : |z| = R, =(z) ≥ 0}. This sort of inequality will be needed in Theme 11. [K]62 Let ΓR = be the semicircular contour {Reiθ : 0 ≤ θ ≤ π}, where R > 1. Use the answer to question 61 to show that ∣∣∣∣∫ ΓR eizdz z4 + 1 ∣∣∣∣ ≤ π RR4 − 1 . [K]63 Let γ be any contour from 1− i to 1 + i. Evaluate the following integrals: a. ∫ γ 4z3 dz; b. ∫ γ cos z dz; c. ∫ γ sin 2z dz. [K]64 Let γ be the semi-circle from 2i to −2i that passes through −2 in the positive direction. Find ∫ γ z −1 dz a. from the definition; b. by using a suitable branch of log as an anti-derivative. 65 Let Γ be any contour from exp(2πi/3) to exp(−2πi/3) which lies entirely on the left hand side of the imaginary axis. Evaluate ∫ Γ z −1 dz. math2069 Complex Analysis Problems 2017 10 81 Find the Taylor series for z 7→ (1 + z)1/2 in powers of z which is valid for |z| < 1. 82 Find the first four terms in the Taylor series for ez(1 + z)1/2 valid for |z| < 1. Laurent Series [K]83 Let f(z) = z (z − 1)(z + 4) . a. Find the largest annuli or open discs centred at −1 in which f is analytic. (There are 3 such regions). b. For each of the regions in a. above, find the corresponding Laurent series for f about −1. [K]84 Give two Laurent series in powers of z for the function f given by f(z) = z−3(1− z)−1 and specify the regions in which those series are valid. [K]85 a. Let f be the function given by f(z) = 2z − 4 z2 − 4z + 3 . Find the Laurent series for f that is valid for |z − 1| > 2; b. Assuming that the function f given by f(z) = (z− 2i)−1− (z+ i)−1 has a Laurent series of the form ∑∞ n=−∞ an(z−1)n which converges at z = 3, find the coefficients an. c. Find the Laurent series up to terms in z3 about z = 0 valid at z = 12 for the function given by f(z) = cosec z and state the radius of convergence. 86 Let f be the function given by f(z) = 1 z2 − 1 . a. Find the Laurent series for f in powers of z+ 2 that converges where z = 0. What is its annulus of convergence? b. Find the Laurent series for f in powers of z+ 2 that converges where z = 3. What is its annulus of convergence? c. Find the Laurent series for f in powers of z+2i that converges where z = 3. What is its annulus of convergence? 87 Show that the function f(z) = cosec(1/z) does not have a Laurent series about 0 converging to f in 0 < |z| < r for any r > 0. [H]88 Let f(z) = z ez − 1 . a. Show f has a removable singularity at z = 0. Find the largest value of r such that f is analytic in the annulus 0 < |z| < r. b. Let ∞∑ n=0 anz n be the Laurent series for f in 0 < |z| < r for r in a. above. Find a0. Show that f(z) + 12z is an even function in z, and hence a1 = − 1 2 , an = 0 for n ≥ 3 and n odd. c. The Bernoulli numbers Bn are defined by z ez − 1 = ∞∑ n=0 Bnz n n! . Find a recurrence relation for Bn in terms of B0, B1, . . . Bn−1, by cross-multiplying by the Maclaurin series of ez − 1. Hence calculate Bn for n = 0 to 6. math2069 Complex Analysis Problems 2017 11 9 Singularities and the Method of Residues References: Spiegel chapter 7 pages 172–173, 176–184. Church5 chapter 6 sections 53 – 57. Church6 chapter 6 sections 53 – 57. Church7 chapter 6 sections 62 – 69. [K]89 In each of the six cases below write down the principal part of the function f at each of its singular points. Determine if each singular point is a pole, an essential singularity or a removable singularity of the given function. a. f(z) = z−1 sin z; b. f(z) = z−1 cos z; c. f(z) = z2/(1 + z); d. f(z) = ez/(z2 − 1); e. f(z) = (3− z)−3; f. f(z) = z exp(1/z). [K]90 Write down the residue of each function of question 89 at each of its singularities. [K]91 Let f be defined by f(z) = exp ( z−1 ) . Find the Laurent series for f in powers of z and show that f has an essential singularity at z = 0. [K]92 a. Find the order of the zero of −1 + cos2 z at z = nπ, n ∈ Z; b. Find the order of the pole at z = 0 for the function z 7→ (−1 + cos2 z)−4; c. Find the order of the zero of sin3 z at z = nπ, n ∈ Z; d. Find the order of all the poles and zeros of (−1 + cos2 z)/ sin3 z; e. Find the order of the pole at z = 0 for the function f given by f(z) = (e2z − 1− z)−21 · (ez − 1− z)−10 · sin7(z3) · (z − cos z)13 · (1− cosh z)9. [K]93 Find the residues of each of the following functions at each of their singularities: a. ez z2 + 1 ; b. sinh z (z − i)3 . c. z2 − 3z + 1 (z2 − 1)(z − 1) ; d. ez cosh z ; e. tan z. [K]94 Use the residue theorem to evaluate the following integrals. All contours are taken once anticlockwise. a. ∮ |z|=2 ez z2(z + 1) dz; b. ∮ |z−i|=3 ez 2 − 1 z3 − iz2 dz; c. ∮ |z|=3 sin z z2 − z dz; d. ∮ |z|=9 z3 tan z dz. [K]95 Evaluate ∫ γ z−1(z2 + 1)−1 tanh z dz for the following closed contours γ, where in each case θ ∈ [−π, π]: a. γ = {2 + eiθ}; b. γ = {2eiθ}; c. γ = {5i+ eiθ}. 96 Evaluate ∮ Γ (iz + 1)−1(z2 + 1)−1 cosh(πz) dz where Γ is the contour |z| = 2 taken anti- clockwise. 97 a. Evaluate ∮ γ zne(1/z) dz where γ is the unit circle taken anticlockwise and n is an integer. b. Evaluate ∮ γ zn sin 1 z dz, where γ, n are as in part a. math2069 Complex Analysis Problems 2017 12 10 The Z-transform 98 If Z{fn} = ∑∞ n=0 fnz −n = F (z), prove that Z{nfn} = −zF ′(z). Using Z{un} = z/(z − 1) and this result, or otherwise, find Z{n}. [K]99 Evaluate the following Z-transforms: a. Z{n2}; b. Z{n3}; f. Z{(n+ 1)2}; d. Z{nan}, a ∈ R; e. Z{n sinnθ}; f. Z{an cosnθ}, a ∈ R. [K]100 Evaluate the following inverse Z-transforms by any suitable method. a. Z−1 { 7z z2 − 5z − 6 } ; b. Z−1 { z z2 + z + 1 } ; c. Z−1 { z2 + 5z z2 − 3z − 4 } ; [K]101 Solve the following difference equations for the given initial conditions using the Z- transform: a. yn+2 + 2yn+1 − 3yn = 0, y0 = 1, y1 = 0; b. yn+2 − yn = 2, y0 = 4, y1 = 1; c. 2yn+2 − yn+1 − yn = 15n2n, y0 = −2, y1 = 1. 11 Real Improper Integrals References: Spiegel chapter 7 pages 179–183. Church5 chapter 6 sections 58 – 59. Church6 chapter 7 sections 60 – 61. Church7 chapter 7 sections 71 – 74. In the following problems, a > 0 is a real constant and the recommended contour is the boundary of the half disc |z| ≤ R, =(z) ≥ 0 taken once anticlockwise. You may assume that the integrals converge. [K]102 Evaluate the following integrals: a. ∫ ∞ −∞ dx (x2 + 1)2 ; b. ∫ ∞ 0 x2 dx (x2 + 1)(x2 + 9) ; c. ∫ ∞ −∞ x2 dx x4 + 1 ; d. ∫ ∞ −∞ x2 dx (x2 + 1)(x2 + x+ 1) . 103 Evaluate ∫ ∞ −∞ eix dx x2 + a2 and hence ∫ ∞ −∞ cosx dx x2 + a2 . [K]104 Evaluate the following integrals: a. ∫ ∞ −∞ cos 3x dx x2 + 2x+ 2 ; b. ∫ ∞ −∞ sinx dx x2 − 4x+ 5 . 105 Evaluate ∫ ∞ −∞ cosx dx (x2 + 1)(x2 + 2x+ 5) . math2069 Complex Analysis Problems 2017 15 41 a. z = 2− (3 + 2kπ)i; b. 12 ln(7) + i[tan −1 √ 3 2 + 2kπ]; c. ln(5)− i(2k + 1 2)π. 42 a. isinh 1; b. cos 2 cosh 1 + i sin 2 sinh 1; c. tan 1sech21− i tanh 1 sec2 1 1 + tanh2 1 tan2 1 . 44 a. ( u sinh c )2 + ( v cosh c )2 = 1 if c 6= 0, {iv : −1 ≤ v ≤ 1} if c = 0. b. ( v sin d )2 − ( u cos d )2 = 1, v sin d ≥ 1 if d 6= kπ/2 for k ∈ Z, v = 0 if d = nπ for n ∈ Z, {iv : v ≥ 1} for d = (2n + 1)π/2 and n ∈ Z even, {iv : v ≤ −1} for d = (2n + 1)π/2 and n ∈ Z odd. c. {w ∈ C : <(w) > 0 and =(w) > 0} d. {w ∈ C : <(w) < 0} ∪ {w ∈ C : <(w) = 0, |=(w)| > 1}. 45 a. ±(2 + 2kπ); b. (2 + 2kπ), −2 + (2k + 1)π; c. ±(2 + 2kπi); d. ±(2i + 2kπ); e. (2k+12)π±icosh −1(sinh2) = (2k+12)π±i ln(sinh 2+ √ sinh2 2− 1); f. ±i(cos−1(sin 2)+2kπ). 46 a. 2kπ+π; b. 2kπ±i ln(2+ √ 3); c. 2kπi±(ln(2+ √ 5)+12πi); d. ± ln(4+ √ 15)+(2kπ+12π)i; e. kπ + (−1)ni ln(2 + √ 5); f. z = (nπ − 14π) + (−1) ni sinh−1 1√ 2 . 47 a. log 1 = 2kπi, Log 1 = 0; b. log i = πi(2k + 12), Log i = 1 2πi; c. log(−3 + i) = 1 2 ln(10)− i tan −1 1 3 + iπ(2k + 1), Log(−3 + i) = 1 2 ln(10)− i tan −1 1 3 + iπ. 49 Everywhere except at z = ±2i and on the half line x ≤ 0, y = −2. 50 10i, (10− 4π)i. 51 −iπ/2 and 3iπ/2 respectively. 52 a. exp(−12π + 2kπ); b. exp(−π/2); c. −e π d. eπ/2 (cos ln 2 + i sin ln 2). 53 exp(i ln √ 2 + 34π + 2kπ); 9.92. 54 exp(−π 2(k + 14)). 55 2− i. 56 12 i 57 a. 29 2 − 11i; b. −iπ. 58 −4; −4(1− iπ). 60 a. 10πi; b. 83 + 16i; c. − 8 3 − 16i; d. 2πiab. 63 a. 0 64 πi 65 2πi/3 66 a. The largest domain in which Log(z2 − 1) is analytic is C \H where H = {z ∈ R : |z| ≤ 1} ∪ {iy : y ∈ R}. b. Part i) is correct – correct partial fractions and anti-derivatives Log(z− 1) and Log(z+ 1) are analytic in the domain C \ {z ∈ R : z ≤ 1} which contains γ. Part ii) is not a correct use of the Anti-derivative Theorem (and so may be incorrect) as γ goes outside the maximal domain of analyticity of Log(z2 − 1) i.e. γ crosses the imaginary axis which is part of H above. c. i(2 tan−1(1/2) − π) ≈ −2.214i. (The answer from ii) is 2i(π − tan−1(2)) ≈ 4.069i (incorrect)). 67 f is analytic in C \H where H = {−s± i : s ≥ 0} 68 a. 2πie; b. −49π exp( 2 3 i); c. − 1 2πi. 69 0. 70 −πi/16. 71 0 (n 6= −1), 2πi (n = −1). 72 0 for n ≥ 0, 2πi/m! if n = −m− 1. 73 0, ±e, ±e2, ±(e2 − e). 74 a. e−1 ∑∞ n=0(−1)n(z − 1)n/n!, radius = ∞; b. radius = ∞; c. −1 6 ∑∞ n=0 ( z − 2 2 )n − 1 3 ∑∞ n=0(−1)n(z − 2)n, radius = 1. math2069 Complex Analysis Problems 2017 16 75 a. i) |z − 1| < 2. ii) −1/6 − (z − 1)/36 − 7(z − 1)2/216 − · · · . iii) an = −(1/2n+1 + (−1)n/3n+1)/5. b. i) |z| < 1/3. ii) 1 + 4z + 25z2/2 + · · · . iii) an = n∑ k‘=0 3n−k k! . c. i) |z| < π/2. ii)1+3z2/2+29z4/24+· · · . iii) f(z) = ∞∑ n=0 bnz 2n where k∑ n=0 bn (−1)k−n/(2k− 2n)! = 1/k! for k ≥ 0. d. i) |z−1| < 4. ii) e2/4+7e2(z−1)/16+25e2(z−1)2/64+· · · , iii) an = e2 4n+1 n∑ k=0 8k(−1)n−k k! . e. i) |z| < 1. ii) 1 − 3z2/2 + 37z4/24 + · · · . iii) a2n = (−1)n n∑ k=0 1/(2k)! for all n ≥ 0 and an = 0 for all n odd. f. i) |z| < π/4. ii) 1 + 3z2 + 19z4/3 + · · · . iii) f(z) = ∞∑ n=0 bnz 2n where k∑ n=0 bn (−4)n−k/(2n− 2k)! = 1 for k ≥ 0. g. i) |z| < π/2. ii) 1 + z2/2 + 5z4/24 + · · · . iii) f(z) = sec z = ∞∑ n=0 bnz 2n where k∑ n=0 bn (−1)n−k/(2n− 2k)! = { 1 if k = 0 0 if k > 0 . 76 a. 1 (1− z)2 ; b. z (1− z)2 ; c. 1 + z (1− z)3 = d dz ( z (1− z)2 ) ; d. z + z2 (1− z)3 ; e. −Log(1−z). 77 √ 2. 79 ∑∞ n=0(z − i)n/(1− i)n+1, radius = √ 2. 80 cosh z = − ∑∞ n=0 1 (2n)!(z − iπ) 2n; z5 = ∑5 n=0 an(z − iπ)n where a0 = iπ5, a1 = 5π4, a2 = −10π3i, a3 = −10π2, a4 = 5πi, a5 = 1. 81 1 + z2 − z2 8 + z3 16 − · · · . 82 1 + 3z 2 + 7z2 8 + 17z3 48 . 83 a. The 3 regions are I) |z + 1| < 2, II) 2 < |z + 1| < 3, III) |z + 1| > 3. b. For I), f(z) = ∞∑ n=0 [ − 1 10 · 1 2n + 4 15 · ( −1 3 )n] (z + 1)n For II), f(z) = 1 5 ∞∑ n=0 2n (z + 1)−n−1 + 4 15 ∞∑ n=0 ( −1 3 )n (z + 1)n = ∞∑ k=−∞ ak(z + 1) k where ak = { 2−k−1/5 if k < 0 4(−1)k/(15 · 3k) if k ≥ 0 For III), f(z) = ∞∑ n=0 [ 2n 5 + 4(−3)n 5 ] (z+1)−n−1. 84 ∑∞ n=0 z n−3, 0 < |z| < 1, − ∑∞ n=0 z −(n+4), |z| > 1. 85 a. 1 z − 1 + ∑∞ n=0 2n (z − 1)n+1 ; b. (−1)n (1− 2i)n+1 for n ≥ 0, a−n = (−1)n(1 + i)n−1 for n ≥ 1; c. z−1 + 1 6 z + 7 360 z3 + . . . . 88 a. 2π; b. a0 = 1; c. p−1∑ n=0 ( p n ) Bn = 0 for p ≥ 2, B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42, B3 = B5 = 0. math2069 Complex Analysis Problems 2017 17 89 a. z = 0, removable; b. z = 0, pole, z−1; c. z = −1, pole, (z + 1)−1; d. poles at z = ±1, e2(z−1) , −1 2e(z+1) ; e. z = 3, pole, −(z − 3) −3; f. z = 0, essential, ∑ m>1 z 1−m/m! 90 a. 0; b. 1; c. 1; d. e2 ,− 1 2e ; e. 0 f. 1 2 . 92 a. 2; b. 8; c. 3; d. simple pole at z = nπ, n ∈ Z; e. pole of order 2. 93 a. z = i, ei/(2i); z = −i, e−i−2i ; b. z = i, 1 2(i sin 1). c. z = −1; 5 4 ; z = 1;− 1 4 ; d. z = iπ2 + kπi;1; 94 a. 2πi/e; b. 2πi(1− e−1); c. 2πi sin 1. 95 a. 0; b. 0; c. 16/(12− 27π2). 96 0. 97 a. 0 if n < −1, 2πi/(n + 1)! if n ≥ 0, 2πi if n = −1; b. 0 if n is odd, 0 if n < 0, (−1)n/22πi/(n+ 1)! if n ≥ 0 is even. 98 Z{n} = z/(z − 1)2 99 a. z(z+ 1)/(z− 1)3; b. z(z2 + 4z+ 1)/(z− 1)4; c. z2(z+ 1)/(z− 1)3; d. az/(z−a)2; e. z(z2 − 1) sin θ/(z2 − 2z cos θ + 1)2; f. z(z − a cos θ)/(z2 − 2az cos θ + a2) 100 a. {6n − (−1)n}; b. {(2/ √ 3) sin(2nπ/3)}; c. {95 × (4) n − 15(−1) n}. 101 a. yn = 1 4(3 + (−3) n); b. yn = 2(−1)n + n+ 2; c. yn = (3n− 425 )2 n − 185 ( −12 )n + 10. 102 a. π/2; b. π/8; c. π/ √ 2; d. √ 3π/3. 103 πe−a/a. 104 a. πe−3 cos 3; b. πe−1 sin 2. 105 π40{8e −1 + e−2(4 sin 1− 2 cos 1)}. 107 I1 = −π/96; I2 = 0. 109 πi/4. 111 I2 = 49π Last revision : February 2017. Copyright c© is vested in the University of New South Wales 2017.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved