Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Damping Constant - Oscillations and Waves - Past Paper, Exams of Physics

This is the Past Paper of Oscillations and Waves which includes Velocity and Displacement, Conservative Force, Simple Harmonic Oscillator, Velocity and Acceleration, Period of Simple Pendulum, Displacement and Acceleration etc. Key important points are: Damping Constant, Harmonic Oscillator, Maximum Kinetic Energy, Critically Damped System, De Broglie Wavelength of Electron, Oscillator Velocity, Frequency of Oscillation, Spring Constant

Typology: Exams

2012/2013

Uploaded on 02/23/2013

hatim.tai
hatim.tai 🇮🇳

4.6

(26)

74 documents

1 / 11

Toggle sidebar

Related documents


Partial preview of the text

Download Damping Constant - Oscillations and Waves - Past Paper and more Exams Physics in PDF only on Docsity! KEELE UNIVERSITY DEPARTMENT OF PHY10012 OSCILLATIONS AND WAVES 2007 Exam paper PART A Attempt ALL questions. Tick the box by the answer you judge to be correct. Marks will not be deducted for incorrect answers. A1.  A harmonic oscillator has maximum kinetic energy when the displacement is [  ]  maximum (+A) [  ]  minimum  (­A) [  ]  0 [  ]  ± A / √2 [1] A2. In a critically damped system a decrease in the damping constant will result in the system [  ]  becoming overdamped [  ]  becoming underdamped [  ]  becoming critically damped [  ]  becoming overdamped or underdamped depending on the oscillator’s mass [1] A3. The de Broglie wavelength of an electron with a velocity 4 x 106 m s­1 is [  ]  5.6 x 109  m [  ]  1.8 x 10­10  m [  ]  7.3 x 10­4  m [  ]  2.0 x 1015  m [1] A4. In an underdamped oscillating system the damping constant γ, oscillator mass and natural frequency ω0 satisfy [  ]  γ < 2mω0 [  ]  γ = 2mω0   [  ]  γ > 2mω0 [  ]   γ > mω0 [1] A5. The kinetic and potential energies in a simple harmonic oscillator are equal when the displacement equals [  ]  ± A [  ]  ± A / √2 [  ]  0 [  ]  ± ½ A [1] PART B attempt ALL questions BI. Two sine waves with frequencies of 600 Hz and 650 Hz are travelling along a line. What are the highest and lowest frequencies in the resulting waveform. [3] B2. A 0.5 kg mass attached to a spring oscillates at an angular frequency of 10 rads". Determine the spring constant. [3] B3. An oscillator’s displacement is given by x = 0.5 cos(at - 5) where @ = 5 rad s' and 5 = 7/4 rad. Calculate the oscillator’s velocity as it passes through the equilibrium position. (3] B4.   The displacement x of an oscillating 2 kg mass, attached to a spring, is described by the equation of motion  2 d2 x dt2 4 dx dt 10 x=0 Determine the damping constant γ, the spring constant k and the undamped natural frequency ω0. [3] B5.   Two waves E1 and E2 have equal amplitude A0 and angular frequency ω, but a phase difference ϕ. Show that the sum of the waves is a wave with amplitude A = 2 A0 cos(½ϕ). [3] PART C Answer TWO questions from this section. C1. At equilibrium, a float of mass M and cross­sectional area A projects above the surface of a liquid with density ρ. Show that if the equation of motion of the float is                                     M d2 y dt2 =− Ag y                                                                                                                                                     [15] Hence show that the float undergoes simple harmonic motion with angular frequency  [10] Given that ρ = 1.2 x 103 kg m­3, A = 5 x 10­5 m2 and M = 2 x 10­3 kg determine the oscillation frequency and the period. [5] C2. The displacement of a mass m attached to a spring is given by x = Asin(ωt). Derive expressions for the kinetic energy Ek and potential energy Ep (do NOT derive the expression for potential energy U = ½kx2).  [10] Hence show that  (a) the total energy of the mass is E = ½kA2 where k is the spring constant [10] (b) the average potential energy Ū = ½E [10] C3.  A particle of mass m is trapped in an infinite potential well, width L, such that                                                  V = ∞ for  ∞< x < 0      V = 0  for  0 < x < L V = ∞ for  L < x < ∞  a) Show that solutions of the Schrödinger Equation      −h2 2 m ∂2 ∂ x2 V =E possible only if the energy E is quantised,       b) Show that the normalised wave function is                                                n= 2L sin  n xL  [15] ω = √(ρAg / M) C4. Two waves y, = Asin(kx-@t) and y2 = Asin(kx+@t) are travelling along a wire. Show that their sum is a standing wave y = 2Acos(@t)sin(kx). [8] Sketch the resulting waveform indicating nodes and antinodes, and direction of travel ifany. [7] Two signals travel in a medium such that the phase velocity v, = v/k. If the phase velocity of the medium is 0.5c find the wavelength of a 10 kHz and 15 kHz signal in the medium. [8] Hence show that the group delay v, = Av/Ak = 2.5 x 10’ms". [7]
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved