Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Data Extension - Stochastic Hydrology - Lecture Notes, Study notes of Mathematical Statistics

The main points i the stochastic hydrology are listed below:Data Extension, Forecasting, Stream Flow Records, Reservoir Planning, Calibration Data, Forecast Errors, Method of Simple Averages, Method of Moving Averages, Stochastic Process, Plot Correlogram, Markov Process

Typology: Study notes

2012/2013

Uploaded on 04/20/2013

sathyanarayana
sathyanarayana 🇮🇳

4.4

(21)

143 documents

1 / 27

Toggle sidebar

Related documents


Partial preview of the text

Download Data Extension - Stochastic Hydrology - Lecture Notes and more Study notes Mathematical Statistics in PDF only on Docsity! DATA EXTENSION & FORECASTING 3   Docsity.com Data Extension & Forecasting e.g., Stream flow records for reservoir planning Data forecasting 4   1970 2010 2040 Available data Extension of data We are here Inflow, (Forecast) Time, t Time, t+1 Inflow, It (known) [ ]1 1ˆ , ,...........t t tI f I I+ −=1t̂I + Docsity.com Example-1 7   Data Forecast 105 - 115 103 108 120 97 110 121 117 79 110 107.67 107.75 110.2 108 108.28 109.87 110.67 107.5 Docsity.com Method of Moving Averages (MA) • As a new observation becomes available, new average is computed by dropping the oldest observation and including the newest one. • No. of data points used for computing the average remains the same • Uses the latest ‘T’ periods of known data Data Extension & Forecasting 8   T+1 T T T+2 T T+3 Docsity.com Example-2 9   Data MA (3) 105 - 115 - 103 - 108 120 97 110 121 117 79 107.67 108.67 110.33 108.33 109 109.33 116 Docsity.com If the correlogram indicates that the time series is purely random •  Xt , Xt-k are independent •  Distribution of Xt is known •  Generate Xt using data generation technique to follow given distribution with parameters estimated from sample Data Generation – Uncorrelated Data 12   k     ρk   ρk=0, v k ≠ 0   Mainly used for flood peaks, storm intensities, short duration rainfall etc . Not useful for stream flows, seasonal rainfall, and such long time processes.   Docsity.com •  Most hydrologic time series exhibit serial dependence e.g., X(t) correlated with X(t-τ) ρk ≅ (ρ1)k ρk → 0, k → ∞ Data Generation – Serially Correlated Data 13   ρk     k     Exponentially decaying   First order Markov process   Docsity.com First order Markov process: Xt+1 = µx +ρ1 (Xt – µx ) + εt+1 ε ∼ Mean 0 and variance σε2 This model is stationary w.r.t both mean and variance Data Generation – Serially Correlated Data 14   Deterministic component   Random component   Docsity.com If X ∼ N(µx, σx2) then ε ∼ N(0, σε2) If {ut } ∼ N(0, 1) , {utσε} i.e., is N(0, σε2) Data Generation – Serially Correlated Data 17   ( )211t xuσ ρ− ( ) 21 1 1 11t x t x t xX X uµ ρ µ σ ρ+ += + − + − Standard normal deviate   First order stationary Markov model Or Thomas Fiering model (Stationary)   Docsity.com To generate data using First order Markov model, • Known sample estimates of µx, σx, ρ1 • Assume X1 (may be assumed to be µx) • Generate values X2, X3, X4, X5 …… • Generate a large set of values and discard first 50-100 values to ensure that the effect of initial value dies down • Negative value: retain it for generating next value, set it to zero, in applications. Data Generation – Serially Correlated Data 18   ( ) 21 1 1 11t x t x t xX X uµ ρ µ σ ρ+ += + − + − Docsity.com Consider the annual stream flow data (in cumecs) at a river for 29 years Example-3 19   S.No. Data S.No. Data S.No. Data 1 1093.31 11 1042.33 21 1444.97 2 1636.87 12 1492.13 22 1203.08 3 1485.67 13 1205.90 23 910.73 4 1579.51 14 1245.77 24 883.59 5 1443.00 15 1197.81 25 970.98 6 1327.40 16 1754.55 26 1001.92 7 1108.70 17 1108.56 27 1434.91 8 928.10 18 957.64 28 1635.00 9 840.83 19 1425.80 29 1875.78 10 1447.03 20 1128.62 Docsity.com First order Markov model with non-stationarity: •  First order stationary Markov model assumes that the process is stationary in mean, variance and lag- one auto correlation •  The model is generalized to account for non- stationarity (mainly due to seasonality/periodicity) in hydrologic data to some extent •  A main application of this model is in generating the monthly stream flows with pronounced seasonality. •  Periodicity may affect not only the mean, but all the moments of data including the serial correlations. Data Generation – Serially Correlated Data 22   Docsity.com First order Markov model with non-stationarity, for stream flow generation: ρj is serial correlation between flows of jth month and j+1th month. ti, j+1 ∼ N(0, 1) Data Generation – Serially Correlated Data 23   ( )1 2, 1 1 , 1 1 1ji j j j ij j i j j j j X X t σ µ ρ µ σ ρ σ + + + + += + − + − StaHonary  First  order   Markov  Model  ( ) 2 1 1 1 11j x j x j xX X tµ ρ µ σ ρ+ += + − + − Docsity.com The monthly stream flow (in cumec) for a river is available for 29 years (only 12 years data is given here) Example-4 24   SL. YEAR JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY NO. 1 1979-80 54.60 325.40 509.50 99.40 53.50 25.80 12.50 5.60 3.10 2.20 0.90 0.81 2 1980-81 220.78 629.16 591.32 120.33 43.33 14.83 8.41 4.05 1.73 1.12 0.85 0.96 3 1981-82 131.30 538.89 574.21 151.06 53.03 19.49 8.38 4.51 1.89 1.11 0.74 1.06 4 1982-83 100.19 630.02 702.07 83.29 32.45 16.60 6.80 3.33 2.03 1.23 0.85 0.65 5 1983-84 171.30 444.30 512.30 211.00 62.40 24.00 8.40 4.50 2.30 1.10 0.80 0.60 6 1984-85 147.80 636.20 293.50 127.70 79.70 22.10 10.10 4.60 2.70 1.40 0.70 0.90 7 1985-86 174.50 323.30 393.20 75.40 100.60 21.80 10.90 4.00 1.90 1.40 1.00 0.70 8 1986-87 126.40 288.30 395.30 54.40 29.80 21.40 6.40 2.60 1.70 0.70 0.60 0.50 9 1987-88 60.50 291.00 269.60 95.09 80.84 26.39 10.37 3.68 1.65 0.71 0.62 0.38 10 1988-89 40.95 620.00 427.60 251.80 74.73 17.71 7.05 3.33 1.51 0.87 0.59 0.90 11 1989-90 167.10 398.80 277.80 102.70 61.10 19.54 6.79 3.33 1.52 0.96 0.77 1.93 12 1990-91 150.80 591.50 471.20 197.00 35.67 25.62 10.52 4.02 2.10 1.22 1.32 1.16 Docsity.com Assume X1 = µ1 = 117.49; σ1 = 52.24, ρ1 = 0.348 µ2 = 474.5, σ2 = 150.18, X1,2 = = = 521.67 Example-4 (contd.) 27   ( ) 222 1 1,1 1 1,2 2 1 1 1X tσµ ρ µ σ ρ σ + − + − ( ) 2 150.18474.5 0.348 117.49 117.49 52.24 0.335*150.18 1 0.348 + − + − Docsity.com X1,2 =521.67, µ2 = 474.5; σ2 = 150.18, ρ2 = 0.154 µ3 = 421.39, σ3 = 126.53, X1,3 = = 474.64 Example-4 (contd.) 28   ( ) 2 126.53421.39 0.154 521.67 474.5 150.18 0.377*126.53 1 0.154 + − + − Docsity.com X1,3 =474.64, µ3 = 421.39; σ3 = 126.53, ρ3 = 0.169 µ4 = 145.94, σ4 = 77.65, X1,4 = = 180.45 Example-4 (contd.) 29   ( ) 2 77.65145.94 0.169 474.64 421.39 126.53 0.379*77.65 1 0.169 + − + − Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved