Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Discrete Math Cram Cheat Sheet, Cheat Sheet of Discrete Mathematics

In this document you have all you need to know for the Discrete Mathematics exam

Typology: Cheat Sheet

2019/2020
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 10/09/2020

kavinsky
kavinsky 🇺🇸

4.4

(22)

37 documents

Partial preview of the text

Download Discrete Math Cram Cheat Sheet and more Cheat Sheet Discrete Mathematics in PDF only on Docsity! Discrete Math Cram Sheet October 6, 2016 Contents 1 Propositional Logic 2 1.1 Truth Tables . . . . . . . . . . . . . . . . . . . 2 1.2 Logical Equivalences . . . . . . . . . . . . . . 2 1.3 Rules of Inference . . . . . . . . . . . . . . . . 2 1.4 Satisfiability . . . . . . . . . . . . . . . . . . . 3 2 Proofs 3 2.1 Well-Ordering Principle . . . . . . . . . . . . 3 2.2 Mathematical Induction . . . . . . . . . . . . 3 2.3 Strong Induction . . . . . . . . . . . . . . . . 3 3 Recurrence Relations 3 4 Number Theory 3 4.1 Divisibility . . . . . . . . . . . . . . . . . . . . 3 4.2 Primes and Factors . . . . . . . . . . . . . . . 3 4.3 Divisors . . . . . . . . . . . . . . . . . . . . . 3 4.4 Modular Arithmetic . . . . . . . . . . . . . . . 3 5 Graph Theory 4 5.1 Notation . . . . . . . . . . . . . . . . . . . . . 4 5.2 Definitions . . . . . . . . . . . . . . . . . . . . 4 5.3 Properties . . . . . . . . . . . . . . . . . . . . 4 6 Linear Algebra 4 7 Combinatorics 4 7.1 Permutations and Combinations . . . . . . . 4 7.2 Binomial Coefficients . . . . . . . . . . . . . . 5 7.3 Generalized Permutations and Combinations 5 7.4 Principle of Inclusion-Exclusion . . . . . . . . 5 7.5 Derangements . . . . . . . . . . . . . . . . . . 5 7.6 Catalan Numbers . . . . . . . . . . . . . . . . 6 7.7 Partitions . . . . . . . . . . . . . . . . . . . . . 6 7.8 Stirling Numbers . . . . . . . . . . . . . . . . 6 8 Probability 6 1 Discrete Math Cram Sheet alltootechnical.tk 1 Propositional Logic 1.1 Truth Tables p T T F F q T F T F F F F F F contradiction p ∨ q F F F T joint denial p 8 q F F T F converse nonimplication ¬p F F T T left negation p 9 q F T F F nonimplication ¬q F T F T right negation p⊕ q F T T F exclusive disjunction p Z q F T T T alternative denial p ∧ q T F F F conjunction p↔ q T F F T biconditional/equivalence q T F T F right projection p→ q T F T T implication p T T F F left projection p← q T T F T converse implication p ∨ q T T T F disjunction T T T T T tautology 1.2 Logical Equivalences Identity p ∧ T ≡ p p ∨ F ≡ p Domination p ∨ T ≡ T p ∧ F ≡ F Idempotent p ∧ p ≡ p p ∨ p ≡ p Commutative p ∧ q ≡ q ∧ p p ∨ q ≡ q ∨ p Associative p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r Distributive p∨ (q ∧ r) ≡ (p ∨ q)∧ (p ∨ r) p∧ (q ∨ r) ≡ (p ∧ q)∨ (p ∧ r) De Morgan’s ¬ (p ∧ q) ≡ ¬p ∨ ¬q ¬ (p ∨ q) ≡ ¬p ∧ ¬q Absorption p ∧ (p ∨ q) ≡ p p ∨ (p ∧ q) ≡ p Negation p ∨ ¬p ≡ T p ∧ ¬p ≡ F Double Negation ¬ (¬p) ≡ p Involving Biconditionals p↔ q ≡ (p→ q) ∧ (q→ p) p↔ q ≡ ¬p↔ ¬q p↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q) ¬ (p↔ q) ≡ p↔ ¬q Involving Conditional Statements p→ q ≡ ¬p ∨ q p→ q ≡ ¬q→ ¬p p ∨ q ≡ ¬p→ q p ∧ q ≡ ¬ (p→ ¬q) (p→ q) ∧ (p→ r) ≡ p→ (q ∧ r) (p→ r) ∧ (q→ r) ≡ (p ∨ q)→ r (p→ q) ∨ (p→ r) ≡ p→ (q ∨ r) (p→ r) ∨ (q→ r) ≡ (p ∧ q)→ r 1.3 Rules of Inference Modus Ponens p→ q p q Modus Tollens ¬q p→ q ¬p Associative (p ∨ q) ∨ r p ∨ (q ∨ r) Commutative p ∧ q q ∧ p Biconditional p→ q q→ p p↔ q Exportation (p ∧ q)→ r p→ (q→ r) Contraposition p→ q ¬q→ ¬p Hypothetical Syllogism p→ q q→ r p→ r Material Implication p→ q ¬p ∨ q Distributive (p ∨ q) ∧ r (p ∧ r) ∨ (q ∧ r) Absorption p→ q p→ (p ∧ q) Disjunctive Syllogism p ∨ q ¬p q Addition p p ∨ q Simplification p ∧ q p Conjunction p q p ∧ q Double Negation p ¬¬p Disjunctive Simplification p ∨ p p Resolution p ∨ q ¬p ∨ r q ∨ r 2 Discrete Math Cram Sheet alltootechnical.tk 7.2 Binomial Coefficients The binomial coefficient (nk) can be defined as the co- efficient of the xk term in the polynomial expansion of (x + 1)n, which occurs in the binomial formula (x + y)n = n ∑ k=0 ( n k ) xn−kyk ( n k ) = n! k! (n− k)! = ( n− 1 k− 1 ) + ( n− 1 k ) = ( n n− k ) Pascal’s Triangle Row 0: 1 Row 1: 1 1 Row 2: 1 2 1 Row 3: 1 3 3 1 Row 4: 1 4 6 4 1 Row 5: 1 5 10 10 5 1 Row 6: 1 6 15 20 15 6 1 Row 7: 1 7 21 35 35 21 7 1 Row 8: 1 8 28 56 70 56 28 8 1 Row 9: 1 9 36 84 126 126 84 36 9 1 Row 10: 1 10 45 120 210 252 210 120 45 10 1 7.3 Generalized Permutations and Combina- tions Permutations with Repetitions The number of permutations of length k from n distinct ob- jects where repetition is allowed is nk. Permutations with Duplicate Objects The number of permutations of a multiset of n objects made up of k distinct objects can be expressed as follows:( n n1, n2, . . . , nk ) = n! n1!n2! · · · nk! where ni represents the multiplicity of a distinct object i in the multiset. Combinations with Repetition (Stars and Bars) The number of combinations of length n using k different kinds of objects is nRk = ( n + k− 1 n− 1 ) = ( n + k− 1 k ) = (n + k− 1)! k! (n− 1)! Number of Non-negative Integer Solutions The num- ber of solutions of the equation x1 + x2 + · · ·+ xk = n in non-negative integers is (n+k−1k−1 ). Number of Positive Integer Solutions The number of solutions of the equation x1 + x2 + · · · + xk = n in posi- tive integers is (n−1k−1). 7.4 Principle of Inclusion-Exclusion This provides an organized method/formula to find the number of elements in the union of a given group of sets, the size of each set, and the size of all possible intersections among the sets. Two/Three Sets Suppose that A,B, and C are finite sets. Then: • |A ∪ B| = |A|+ |B| − |A ∩ B| • |A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C| General Form For finite sets A1, . . . , An, one has the identity: ∣∣∣∣ n⋃ i=1 Ai ∣∣∣∣ = n∑ i=1 |Ai| − ∑ 1≤i<j≤n ∣∣Ai ∩ Aj∣∣ + ∑ 1≤i<j<k≤n ∣∣Ai ∩ Aj ∩ Ak∣∣ − . . . + (−1)n−1 |A1 ∩ · · · ∩ An| = n ∑ k=1 (−1)k+1 ( ∑ 1≤i1<···<ik≤n ∣∣Ai1 ∩ · · · ∩ Aik ∣∣ ) 7.5 Derangements A derangement is a permutation of the elements of a set, such that no element appears in its original position. The number of derangements of n elements can be determined as follows: !n = (n− 1) (! (n− 1) +! (n− 2)) = n! n ∑ k=0 (−1)k k! OEIS A000166: 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, . . . 5 Discrete Math Cram Sheet alltootechnical.tk 7.6 Catalan Numbers Cn = 1 n + 1 ( 2n n ) = (2n)! (n + 1)! n! = n ∏ k=2 n + k k for n ≥ 0 = ( 2n n ) − ( 2n n + 1 ) = n−1 ∑ i=0 CiCn−i−1 OEIS A000108: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, . . . Applications 1. number of expressions containing n pairs of paren- theses which are correctly matched 2. number of different ways n + 1 factors can be com- pletely parenthesized 3. number of full binary trees with n + 1 leaves 4. number of monotonic lattice paths along the edges of a grid with n× n square cells, which do not pass above the diagonal 5. number of triangulations of a convex polygon with n + 2 sides 6. number of permutations of {1, . . . , n} that avoid the pattern 123 (or any of the other patterns of length 3) 7. number of noncrossing partitions of the set {1, . . . , n} 8. number of ways to tile a stairstep shape of height n with n rectangles 9. number of ways to form a “mountain range” with n upstrokes and n downstrokes that all stay above the original line 10. number of semiorders on n unlabeled items 7.7 Partitions The function p (n, k) denotes the number of ways of writ- ing n as a sum of exactly k terms. p (n, k) =  1 if n = k = 0 0 if n < k p (n− 1, k− 1) + p (n− k, k) if n ≥ k 7.8 Stirling Numbers First Kind (Cycles) Counts number of permutations of n elements with k dis- joint cycles. [n k ] =  1 if n = k = 0 0 if n 6= k ∧ k = 0 (n− 1) [ n−1 k ] + [ n−1 k−1 ] if n, k > 0 Second Kind (Subsets) Counts the number of ways to partition a set of n objects into k non-empty subsets. {n k } =  1 if n = k = 0 0 if n 6= k ∧ k = 0 (k− 1) { n−1 k } + { n−1 k−1 } if n, k > 0 8 Probability 6
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved