Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Engineering Physics I Formula Cheat Sheets, Cheat Sheet of Engineering Physics

All Engineering Physics formulas chapters by chapters

Typology: Cheat Sheet

2019/2020

Uploaded on 10/09/2020

hugger
hugger 🇺🇸

4.6

(8)

8 documents

Partial preview of the text

Download Engineering Physics I Formula Cheat Sheets and more Cheat Sheet Engineering Physics in PDF only on Docsity! PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter 2 Units for SI Base Quantities Quantity Unit Name Unit Symbol Length Meter M Time Second s Mass (not weight) Kilogram kg Common Conversions 1 kg or 1 m 1000 g or m 1 m 1 × 106 𝜇𝑚 1 m 100 cm 1 inch 2.54 cm 1 m 1000 mm 1 day 86400 seconds 1 second 1000 milliseconds 1 hour 3600 seconds 1 m 3.281 ft 360° 2𝜋 rad Important Constants/Measurements Mass of Earth 5.98 × 1024 kg Radius of Earth 6.38 × 106 m 1 u (Atomic Mass Unit) 1.661 × 10−27 kg Density of water 1 𝑔/𝑐𝑚3 or 1000 𝑘𝑔/𝑚3 g (on earth) 9.8 m/s2 Density Common geometric Formulas Circumference 𝐶 = 2𝜋𝑟 Area circle 𝐴 = 𝜋𝑟2 Surface area (sphere) 𝑆𝐴 = 4𝜋𝑟2 Volume (sphere) 𝑉 = 4 3 𝜋𝑟3 Volume (rectangular solid) 𝑉 = 𝑙 ∙ 𝑤 ∙ ℎ 𝑉 = 𝑎𝑟𝑒𝑎 ∙ 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 Velocity Average Velocity 𝑉𝑎𝑣𝑔 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 = ∆𝑥 ∆𝑡 2.2 Average Speed 𝑠𝑎𝑣𝑔 = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 2.3 Instantaneous Velocity 𝑣 = lim ∆𝑡→0 ∆?̅? ∆𝑡 = 𝑑𝑥 𝑑𝑡 2.4 Acceleration Average Acceleration 𝑎𝑎𝑣𝑔 = ∆𝑣 ∆𝑡 2.7 Instantaneous Acceleration 𝑎 = 𝑑𝑣 𝑑𝑡 = 𝑑2𝑥 𝑑𝑡2 2.8 2.9 Motion of a particle with constant acceleration 𝑣 = 𝑣0 + 𝑎𝑡 2.11 ∆𝑥 = 1 2 (𝑣0 + 𝑣)𝑡 2.17 ∆𝑥 = 𝑣0𝑡 + 1 2 𝑎𝑡2 2.15 𝑣2 = 𝑣0 2 + 2𝑎∆𝑥 2.16 Chapter 3 Chapter 4 Adding Vectors Geometrically ?⃗? + ?⃗? = ?⃗? + ?⃗? 3.2 Adding Vectors Geometrically (Associative Law) (?⃗? + ?⃗?) + 𝑐 = ?⃗? + (?⃗? + 𝑐) 3.3 Components of Vectors 𝑎𝑥 = 𝑎𝑐𝑜𝑠𝜃 𝑎𝑦 = 𝑎𝑠𝑖𝑛𝜃 3.5 Magnitude of vector |𝑎| = 𝑎 = √𝑎𝑥 2 + 𝑎𝑦 2 3.6 Angle between x axis and vector 𝑡𝑎𝑛𝜃 = 𝑎𝑦 𝑎𝑥 3.6 Unit vector notation ?⃗? = 𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧?̂? 3.7 Adding vectors in Component Form 𝑟𝑥 = 𝑎𝑥 + 𝑏𝑥 𝑟𝑦 = 𝑎𝑦 + 𝑏𝑦 𝑟𝑧 = 𝑎𝑧 + 𝑏𝑧 3.10 3.11 3.12 Scalar (dot product) ?⃗? ∙ ?⃗? = 𝑎𝑏𝑐𝑜𝑠𝜃 3.20 Scalar (dot product) ?⃗? ∙ ?⃗? = (𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧?̂?) ∙ (𝑏𝑥𝑖̂ + 𝑏𝑦𝑗̂ + 𝑏𝑧?̂?) ?⃗? ∙ ?⃗? = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 3.22 Projection of ?⃗? 𝑜𝑛 ?⃗? or component of ?⃗? 𝑜𝑛 ?⃗? ?⃗? ∙ ?⃗? |𝑏| Vector (cross) product magnitude 𝑐 = 𝑎𝑏𝑠𝑖𝑛𝜙 3.24 Vector (cross product) ?⃗?𝑥?⃗? = (𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧?̂?)𝑥(𝑏𝑥𝑖̂ + 𝑏𝑦𝑗̂ + 𝑏𝑧?̂?) = (𝑎𝑦𝑏𝑧 − 𝑏𝑦𝑎𝑧)𝑖̂ + (𝑎𝑧𝑏𝑥 − 𝑏𝑧𝑎𝑥)𝑗̂ + (𝑎𝑥𝑏𝑦 − 𝑏𝑥𝑎𝑦)?̂? or ?⃗?𝑥?⃗? = 𝑑𝑒𝑡 | 𝑖̂ 𝑗 ?̂? 𝑎𝑥 𝑎𝑦 𝑎𝑧 𝑏𝑥 𝑏𝑦 𝑏𝑧 | 3.26 Position vector 𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧?̂? 4.4 displacement ∆𝑟 = ∆𝑥𝑖̂ + ∆𝑦𝑗̂ + ∆𝑧?̂? 4.4 Average Velocity ?⃗⃗?𝑎𝑣𝑔 = ∆𝑥 ∆𝑡 4.8 Instantaneous Velocity ?⃗? = 𝑑𝑟 𝑑𝑡 = 𝑣𝑥 ?̂? + 𝑣𝑦𝑗̂ + 𝑣𝑧?̂? 4.10 4.11 Average Acceleration ?⃗?𝑎𝑣𝑔 = ∆?⃗? ∆𝑡 4.15 Instantaneous Acceleration ?⃗? = 𝑑?⃗? 𝑑𝑡 ?⃗? = 𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧?̂? 4.16 4.17 Projectile Motion 𝑣𝑦 = 𝑣0𝑠𝑖𝑛𝜃0 − 𝑔𝑡 4.23 ∆𝑥 = 𝑣0𝑐𝑜𝑠𝜃𝑡 + 1 2 𝑎𝑥𝑡 2 or ∆𝑥 = 𝑣0𝑐𝑜𝑠𝜃𝑡 if 𝑎𝑥=0 4.21 ∆𝑦 = 𝑣0𝑠𝑖𝑛𝜃𝑡 − 1 2 𝑔𝑡2 4.22 𝑣𝑦 2 = (𝑣0𝑠𝑖𝑛𝜃0) 2 − 2𝑔∆y 4.24 𝑣𝑦 = 𝑣0𝑠𝑖𝑛𝜃0 − 𝑔𝑡 4.23 Trajectory 𝑦 = (𝑡𝑎𝑛𝜃0)𝑥 − 𝑔𝑥2 2(𝑣0𝑐𝑜𝑠𝜃0) 2 4.25 Range 𝑅 = 𝑣0 2 𝑔 sin(2𝜃0) 4.26 Relative Motion 𝑣𝐴𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑣𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑣𝐵𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑎𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑎𝐵𝐴⃗⃗⃗⃗⃗⃗⃗⃗ 4.44 4.45 Uniform Circular Motion 𝑎 = 𝑣2 𝑟 𝑇 = 2𝜋𝑟 𝑣 4.34 4.35 Chapter 9 Impulse and Momentum Impulse 𝐽 = ∫ ?⃗?(𝑡)𝑑𝑡 𝑡𝑓 𝑡𝑖 𝐽 = 𝐹𝑛𝑒𝑡∆𝑡 9.30 9.35 Linear Momentum ?⃗? = 𝑚?⃗? 9.22 Impulse-Momentum Theorem 𝐽 = Δ?⃗? = ?⃗?𝑓 − ?⃗?𝑖 9.31 9.32 Newton’s 2nd law ?⃗?𝑛𝑒𝑡 = 𝑑?⃗? 𝑑𝑡 9.22 System of Particles ?⃗?𝑛𝑒𝑡 = 𝑚?⃗⃗?𝑐𝑜𝑚 ?⃗? = 𝑀?⃗?𝑐𝑜𝑚 ?⃗?𝑛𝑒𝑡 = 𝑑?⃗⃗⃗? 𝑑𝑡 9.14 9.25 9.27 Collision Final Velocity of 2 objects in a head-on collision where one object is initially at rest 1: moving object 2: object at rest 𝑣1𝑓 = ( 𝑚1 − 𝑚2 𝑚1 + 𝑚2 ) 𝑣1𝑖 𝑣2𝑓 = ( 2𝑚1 𝑚1 + 𝑚2 ) 𝑣1𝑖 9.67 9.68 Conservation of Linear Momentum (in 1D) ?⃗? = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ?⃗?𝑖 = ?⃗?𝑓 9.42 9.43 Elastic Collision ?⃗?1𝑖 + ?⃗?2𝑖 = ?⃗?1𝑓 + ?⃗?2𝑓 𝑚1𝑣𝑖1 + 𝑚2𝑣12 = 𝑚1𝑣𝑓1 + 𝑚2𝑣𝑓2 𝐾1𝑖 + 𝐾2𝑖 = 𝐾1𝑓 + 𝐾2𝑓 9.50 9.51 9.78 Collision continued… Inelastic Collision 𝑚1𝑣01 + 𝑚2𝑣02 = (𝑚1 + 𝑚2)𝑣𝑓 Conservation of Linear Momentum (in 2D) ?⃗?1𝑖 + ?⃗?2𝑖 = ?⃗?1𝑓 + ?⃗?2𝑓 9.77 Average force 𝐹𝑎𝑣𝑔 = − 𝑛 ∆𝑡 ∆𝑝 = − 𝑛 ∆𝑡 𝑚∆𝑣 𝐹𝑎𝑣𝑔 = − ∆𝑚 ∆𝑡 ∆𝑣 9.37 9.40 Center of Mass Center of mass location 𝑟𝑐𝑜𝑚 = 1 𝑀 ∑ 𝑚𝑖 𝑛 𝑖=1 𝑟𝑖 9.8 Center of mass velocity ?⃗?𝑐𝑜𝑚 = 1 𝑀 ∑ 𝑚𝑖 𝑛 𝑖=1 ?⃗?𝑖 Rocket Equations Thrust (Rvrel) 𝑅𝑣𝑟𝑒𝑙 = 𝑀𝑎 9.88 Change in velocity Δ𝑣 = 𝑣𝑟𝑒𝑙𝑙𝑛 𝑀𝑖 𝑀𝑓 9.88 Chapter 10 Angular displacement (in radians 𝜃 = 𝑠 𝑟 Δ𝜃 = 𝜃2 − 𝜃1 10.1 10.4 Average angular velocity 𝜔𝑎𝑣𝑔 = ∆𝜃 ∆𝑡 10.5 Instantaneous Velocity 𝜔 = 𝑑𝜃 𝑑𝑡 10.6 Average angular acceleration 𝛼𝑎𝑣𝑔 = ∆𝜔 ∆𝑡 10.7 Instantaneous angular acceleration 𝛼 = 𝑑𝜔 𝑑𝑡 10.8 Rotational Kinematics 𝜔 = 𝜔0 + 𝛼𝑡 10.12 Δ𝜃 = 𝜔0𝑡 + 1 2 𝛼𝑡2 10.13 𝜔2 = 𝜔0 2 + 2𝛼Δ𝜃 10.14 Δ𝜃 = 1 2 (𝜔 + 𝜔0)𝑡 10.15 Δ𝜃 = 𝜔𝑡 − 1 2 𝛼𝑡2 10.16 Relationship Between Angular and Linear Variables Velocity 𝑣 = 𝜔𝑟 10.18 Tangential Acceleration 𝑎𝑡 = 𝛼𝑟 10.19 Radical component of ?⃗? 𝑎𝑟 = 𝑣2 𝑟 = 𝜔2𝑟 10.23 Period 𝑇 = 2𝜋𝑟 𝑣 = 2𝜋 𝜔 10.19 10.20 Rotation inertia 𝐼 = ∑ 𝑚𝑖𝑟𝑖 2 10.34 Rotation inertia (discrete particle system) 𝐼 = ∫ 𝑟2𝑑𝑚 10.35 Parallel Axis Theorem h=perpendicular distance between two axes 𝐼 = 𝐼𝑐𝑜𝑚 + 𝑀ℎ 2 10.36 Torque 𝜏 = 𝑟𝐹𝑡 = 𝑟⊥𝐹 = 𝑟𝐹𝑠𝑖𝑛𝜃 10.39- 10.41 Newton’s Second Law 𝜏𝑛𝑒𝑡 = 𝐼𝛼 10.45 Rotational work done by a toque 𝑊 = ∫ 𝜏𝑑𝜃 𝜃𝑓 𝜃𝑖 𝑊 = 𝜏∆𝜃 (𝜏 constant) 10.53 10.54 Power in rotational motion 𝑃 = 𝑑𝑊 𝑑𝑡 = 𝜏𝜔 10.55 Rotational Kinetic Energy 𝐾 = 1 2 𝐼𝜔2 10.34 Work-kinetic energy theorem ∆𝐾 = 𝐾𝑓 − 𝐾𝑖 = 1 2 𝐼𝜔𝑓 2 − 1 2 𝐼𝜔𝑖 2 = 𝑊 10.52 Moments of Inertia I for various rigid objects of Mass M Thin walled hollow cylinder or hoop about central axis 𝐼 = 𝑀𝑅2 Annular cylinder (or ring) about central axis 𝐼 = 1 2 𝑀(𝑅1 2 + 𝑅2 2) Solid cylinder or disk about central axis 𝐼 = 1 2 𝑀𝑅2 Solid cylinder or disk about central diameter 𝐼 = 1 4 𝑀𝑅2 + 1 12 𝑀𝐿2 Solid Sphere, axis through center 𝐼 = 2 5 𝑀𝑅2 Solid Sphere, axis tangent to surface 𝐼 = 7 5 𝑀𝑅2 Thin Walled spherical shell, axis through center 𝐼 = 2 3 𝑀𝑅2 Thin rod, axis perpendicular to rod and passing though center 𝐼 = 1 12 𝑀𝐿2 Thin rod, axis perpendicular to rod and passing though end 𝐼 = 1 3 𝑀𝐿2 Thin Rectangular sheet (slab), axis parallel to sheet and passing though center of the other edge 𝐼 = 1 12 𝑀𝐿2 Thin Rectangular sheet (slab_, axis along one edge 𝐼 = 1 3 𝑀𝐿2 Thin rectangular sheet (slab) about perpendicular axis through center 𝐼 = 1 12 𝑀(𝑎2 + 𝑏2) Chapter 14 Chapter 15 Density 𝜌 = ∆𝑚 ∆𝑉 𝜌 = 𝑚 𝑉 14.1 14.2 Pressure 𝑝 = ∆𝐹 ∆𝐴 𝑝 = 𝐹 𝐴 14.3 14.4 Pressure and depth in a static Fluid P1 is higher than P2 𝑝2 = 𝑝1 + 𝜌𝑔(𝑦1 − 𝑦2) 𝑝 = 𝑝0 + 𝜌𝑔ℎ 14.7 14.8 Gauge Pressure 𝜌𝑔ℎ Archimedes’ principle 𝐹𝑏 = 𝑚𝑓𝑔 14.16 Mass Flow Rate 𝑅𝑚 = 𝜌𝑅𝑉 = 𝜌𝐴𝑣 14.25 Volume flow rate 𝑅𝑉 = 𝐴𝑣 14.24 Bernoulli’s Equation 𝑝 + 1 2 𝜌𝑣2 + 𝜌𝑔𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 14.29 Equation of continuity 𝑅𝑚 = 𝜌𝑅𝑉 = 𝜌𝐴𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 14.25 Equation of continuity when 𝑅𝑉 = 𝐴𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 14.24 Frequency cycles per time 𝑓 = 1 𝑇 15.2 displacement 𝑥 = 𝑥𝑚cos (𝜔𝑡 + 𝜙) 15.3 Angular frequency 𝜔 = 2𝜋 𝑇 = 2𝜋𝑓 15.5 Velocity 𝑣 = −𝜔𝑥𝑚sin(𝜔𝑡 + 𝜙) 15.6 Acceleration 𝑎 = −𝜔2𝑥𝑚cos (𝜔𝑡 + 𝜙) 15.7 Kinetic and Potential Energy 𝐾 = 1 2 𝑚𝑣2 𝑈 = 1 2 𝑘𝑥2 Angular frequency 𝜔 = √ 𝑘 𝑚 15.12 Period 𝑇 = 2𝜋√ 𝑚 𝑘 15.13 Torsion pendulum 𝑇 = 2𝜋√ 𝐼 𝑘 15.23 Simple Pendulum 𝑇 = 2𝜋√ 𝐿 𝑔 15.28 Physical Pendulum 𝑇 = 2𝜋√ 𝐼 𝑚𝑔𝐿 15.29 Damping force ?⃗?𝑑 = −𝑏?⃗? displacement 𝑥(𝑡) = 𝑥𝑚𝑒 − 𝑏𝑡 2𝑚cos (𝜔′𝑡 + 𝜙) 15.42 Angular frequency 𝜔′ = √ 𝑘 𝑚 − 𝑏2 4𝑚2 15.43 Mechanical Energy 𝐸(𝑡) ≈ 1 2 𝑘𝑥𝑚 2 𝑒− 𝑏𝑡 𝑚 15.44 Chapter 16 Sinusoidal Waves Mathematical form (positive direction) 𝑦(𝑥, 𝑡) = 𝑦𝑚sin (𝑘𝑥 − 𝜔𝑡) 16.2 Angular wave number 𝑘 = 2𝜋 𝜆 16.5 Angular frequency 𝜔 = 2𝜋 𝑇 = 2𝜋𝑓 16.9 Wave speed 𝑣 = 𝜔 𝑘 = 𝜆 𝑇 = 𝜆𝑓 16.13 Average Power 𝑃𝑎𝑣𝑔 = 1 2 𝜇𝑣𝜔2𝑦𝑚 2 16.33 Traveling Wave Form 𝑦(𝑥, 𝑡) = ℎ(𝑘𝑥 ± 𝜔𝑡) 16.17 Wave speed on stretched string 𝑣 = √ 𝜏 𝜇 16.26 Resulting wave when 2 waves only differ by phase constant 𝑦′(𝑥, 𝑡) = [2𝑦𝑚 cos ( 1 2 𝜙)] sin (𝑘𝑥 − 𝜔𝑡 + 1 2 𝜙) 16.51 Standing wave 𝑦′(𝑥, 𝑡) = [2𝑦𝑚 sin(𝑘𝑥)]cos (𝜔𝑡) 16.60 Resonant frequency 𝑓 = 𝑣 𝜆 = 𝑛 𝑣 2𝐿 for n=1,2,… 16.66 Chapter 17 Sound Waves Speed of sound wave 𝑣 = √ 𝐵 𝜌 17.3 displacement 𝑠 = 𝑠𝑚cos (𝑘𝑥 − 𝜔𝑡) 17.12 Change in pressure Δ𝑝 = Δ𝑝𝑚 sin(𝑘𝑥 − 𝜔𝑡) 17.13 Pressure amplitude Δ𝑝𝑚 = (𝑣𝜌𝜔)𝑠𝑚 17.14 Interference Phase difference 𝜙 = Δ𝐿 𝜆 2𝜋 17.21 Fully Constructive Interference 𝜙 = 𝑚(2𝜋) for m=0,1,2… Δ𝐿 𝜆 = 0,1,2 17.22 17.23 Full Destructive interference 𝜙 = (2𝑚 + 1)𝜋 for m=0,12 Δ𝐿 𝜆 = .5,1.5,2.5 … 17.24 17.25 Mechanical Energy 𝐸(𝑡) ≈ 1 2 𝑘𝑥𝑚 2 𝑒− 𝑏𝑡 𝑚 15.44 Sound Intensity Intensity 𝐼 = 𝑃 𝐴 𝐼 = 1 2 𝜌𝑣𝜔2𝑠𝑚 2 17.26 17.27 Intensity -uniform in all directions 𝐼 = 𝑃𝑠 4𝜋𝑟2 17.29 Intensity level in decibels 𝛽 = (10𝑑𝐵) log ( 𝐼 𝐼𝑜 ) 17.29 Mechanical Energy 𝐸(𝑡) ≈ 1 2 𝑘𝑥𝑚 2 𝑒− 𝑏𝑡 𝑚 15.44 Standing Waves Patterns in Pipes Standing wave frequency (open at both ends) 𝑓 = 𝑣 𝜆 = 𝑛𝑣 2𝐿 for n=1,2,3 17.39 Standing wave frequency (open at one end) 𝑓 = 𝑣 𝜆 = 𝑛𝑣 4𝐿 for n=1,3,5 17.41 beats 𝑓𝑏𝑒𝑎𝑡 = 𝑓1 − 𝑓2 17.46 Doppler Effect Source Moving toward stationary observer 𝑓′ = 𝑓 𝑣 𝑣 − 𝑣𝑠 17.53 Source Moving away from stationary observer 𝑓′ = 𝑓 𝑣 𝑣 + 𝑣𝑠 17.54 Observer moving toward stationary source 𝑓′ = 𝑓 𝑣 + 𝑣𝐷 𝑣 17.49 Observer moving away from stationary source 𝑓′ = 𝑓 𝑣 − 𝑣𝐷 𝑣 17.51 Shockwave Half-angle 𝜃 of Mach cone 𝑠𝑖𝑛𝜃 = 𝑣 𝑣𝑠 17.57
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved