Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Spring 2009 Physics Exam 3: Problems on Spin and Quantum Mechanics, Exams of Quantum Mechanics

Solutions to problem 1, 2, and 3 from the spring 2009 physics 3810 exam. The problems deal with the application of raising operator l+, the stern-gerlach experiment, and the probabilities of measuring spin components for a spin-1/2 particle.

Typology: Exams

Pre 2010

Uploaded on 07/30/2009

koofers-user-i0o
koofers-user-i0o 🇺🇸

10 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download Spring 2009 Physics Exam 3: Problems on Spin and Quantum Mechanics and more Exams Quantum Mechanics in PDF only on Docsity! Phys 3810, Spring 2009 Exam #3 1. If we operate with L+ on Y 2 2 (θ, φ), what do we expect to get? Show that we get this result. Since L+ is the raising operator, and there is no state ``above'' Y 2 2 , we expect it to give zero! To show this explicitly, L+Y 2 2 (θ, φ) = h̄e +iφ ( ∂ ∂θ + i cot θ ∂ ∂φ ) √ 15 32π sin2 θ e+2iφ = h̄ √ 15 32π e+iφ (2 sin θ cos θ + i cos θ sin θ(2i)) e+2iφ = 0 In the second step we used cot θ = cos θ sin θ to cancel a factor of sin θ; in the third step, the stuff in the paranthesis cancels. 2. What did the Stern–Gerlach experiment demonstrate? Through exerting different forces on electrons in different spin orientations with a non-uniform magnetic field, the Stern-Gerlach expt showed that when we make a measurement of the electron's spin in a given direction, there are only two results, thus showing the quantization of spin magnetic moment (and by extension, spin angular momentum). 3. Suppose a spin-1 2 particle is in the state χ = 1√ 6 ( 2 1 − i ) What are the probabilities of getting +h̄/2 and −h̄/2 if you measure Sx? What is the expectation value of Sx for this state? Decompose the state into eigenstates of Sx. Using the eigenvectors for Sx, this gives 1√ 6 ( 2 1 − i ) = a√ 2 ( 1 1 ) + b√ 2 ( 1 −1 ) and solve for a and b. Get: 2√ 3 = a + b 1 − i√ 3 = a− b which (adding and subtracting) gives 2a = 3 − i√ 3 =⇒ a = 3 − i√ 12 2b = 1 + i√ 3 =⇒ b = 1 + i√ 2 1 so we've shown χ = 3 − i√ 12 χ (x) + + 1 + i√ 12 χ (x) − so the probability to measure +h̄/2 for Sx is Px,+ = 1 12 (3 − i)(3 + i) = 10 12 = 5 6 and the probability to measure −h̄/2 for Sx is Px,− = 1 12 (1 + i)(1 − i) = 2 12 = 1 6 One can use these probabilities to get the expectation value of S x: 〈Sx〉 = 5 6 (+h̄/2) + 1 6 (−h̄/2) = 4 12 h̄ = h̄ 3 One can also compute it directly: 〈Sx〉 = χ†Sxχ = 1 6 ( 2 1 + i ) h̄ 2 ( 0 1 1 0 )( 2 1 − i ) and this gives: 〈Sx〉 = h̄ 12 ( 2 1 + i ) ( 2 1 − i ) = h̄ 12 (2 − 2i + 2 + 2i) = 4h̄ 12 = h̄ 3 4. Construct the S2, Sz and S+ matrices for a spin–2 particle. S2 = 6h̄2       1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1       Sz = h̄       2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −2       The action of S+ on the states is, for example S+|2 − 2〉 = h̄ √ 2 · 3 − (−2)(−1)|2 − 1〉 = 2h̄|2 − 1〉 Proceeding in this way, we get S+|2 − 2〉 = 2h̄|2 − 1〉 S+|2 − 1〉 = √ 6h̄|2 0〉 S+|2 0〉 = √ 6h̄|2 1〉 S+|2 1〉 = 2h̄|2 2〉 S+|2 2〉 = 0 S+ = h̄       0 2 0 0 0 0 0 √ 6 0 0 0 0 0 √ 6 0 0 0 0 0 2 0 0 0 0 0       2 in this exercise. The value 1 was chosen just because the solution for u(r) is something like a sine function near the origin and the slope of sin(x) is 1 at the origin, so the solution will be a function of (convenient) order 1, but still not normalized. 5 Numbers h̄ = 1.05457 × 10−34 J · s me = 9.10938 × 10−31 kg mp = 1.67262 × 10−27 kg e = 1.60218 × 10−19 C c = 2.99792 × 108 m s Physics ih̄ ∂Ψ ∂t = − h̄ 2 2m ∂2Ψ ∂x2 + VΨ Pab = ∫ b a |Ψ(x, t)|2 dx p→ h̄ i d dx ∫ ∞ −∞ |Ψ(x, t)|2 dx = 1 〈x〉 = ∫ ∞ −∞ x|Ψ(x, t)|2 dx 〈p〉 = ∫ ∞ −∞ Ψ∗ ( h̄ i ∂ ∂x ) Ψ dx σ = √ 〈j2〉 − 〈j〉2 σxσp ≥ h̄ 2 − h̄ 2 2m d2ψ dx2 + V ψ = Eψ φ(t) = e−iEt/h̄ Ψ(x, t) = ∞ ∑ n=1 cnψn(x)e −iEnt/h̄ = ∞ ∑ n=1 Ψn(x, t) ∞ Square Well: En = n2π2h̄2 2ma2 ψn(x) = √ 2 a sin (nπ a x ) ∫ ψm(x) ∗ψn(x) dx = δmn cn = ∫ ψn(x) ∗ f(x) dx ∞ ∑ n=1 |cn|2 = 1 〈H〉 = ∞ ∑ n=1 |cn|2En Harmonic Oscillator: V (x) = 1 2 mω2x2 1 2m [p2 + (mωx)2]ψ = Eψ a± ≡ 1√ 2h̄mω (∓ip+mωx) [A,B] = AB −BA [x, p] = ih̄ H(a+ψ) = (E + h̄ω)(a+ψ) H(a−ψ) = (E − h̄ω)(a+ψ) a−ψ0 = 0 ψ0(x) = (mω πh̄ )1/4 e− mω 2h̄ x2 ψ1(x) = (mω πh̄ )1/4 √ 2mω h̄ xe− mω 2h̄ x2 Free particle: Ψk(x) = Ae i(kx− h̄k 2 2m )t vphase = ω k vgroup = dω dk Ψ(x, t) = 1√ 2π ∫ ∞ −∞ φ(k)ei(kx− h̄k 2 2m t) dk φ(k) = 1√ 2π ∫ ∞ −∞ Ψ(x, 0)e−ikx dx Delta Fn Potl: ψ(x) = √ mα h̄ e−mα|x|/h̄ 2 E = −mα 2 2h̄2 fp(x) = 1√ 2πh̄ exp(ipx/h̄) [Â, B̂] ≡ ÂB̂ = B̂Â Φ(p, t) = 1√ 2πh̄ ∫ ∞ −∞ e−ipx/h̄Ψ(x, t) dx σ2Aσ 2 B ≥ ( 1 2i 〈[Â, B̂]〉 )2 σxσp ≥ h̄ 2 ∆E∆t ≥ h̄ 2 6 − h̄ 2 2m [ 1 r2 ∂ ∂r ( r2 ∂ψ ∂r ) + 1 r2 sin θ ∂ ∂θ ( sin θ ∂ψ ∂θ ) + 1 r2 sin2 θ ∂2ψ ∂φ2 ] + V (r)ψ = Eψ ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) d2Φ dφ2 = −m2Φ sin θ d dθ ( sin θ dΘ dθ ) +[`(`+1) sin2 θ−m2]Θ = 0 Y 00 = √ 1 4π Y 01 = √ 3 4π cos θ Y ±11 = ∓ √ 3 8π sin θe±iφ Y 02 = √ 5 16π (3 cos2 θ − 1) Y ±12 = ∓ √ 15 8π sin θ cos θe±iφ Y ±22 = √ 15 32π sin2 θ e±2iφetc. u(r) ≡ rR(r) − h̄ 2 2m d2u dr2 + [ V + h̄2 2m l(l + 1) r2 ] u = Eu a = 4π0h̄ 2 me2 = 0.529×10−10 m En = − [ m 2h̄2 ( e2 4π0 )2 ] 1 n2 ≡ E1 n2 for n = 1, 2, 3, . . . where E1 = −13.6 eV. R10(r) = 2a −3/2e−r/a R20(r) = 1√ 2 a−3/2 ( 1 − 1 2 r a ) e−r/2a R21(r) 1√ 24 a−3/2 r a e−r/2a λf = c Eγ = hf 1 λ = R ( 1 n2f − 1 n2i ) where R = m 4πch̄3 ( c2 4π0 )2 = 1.097×107 m−1 L = r × p [Lx, Ly] = ih̄Lz [Ly, Lz] = ih̄Lx [Lz, Lx] = ih̄Ly Lz = h̄ i ∂ ∂φ L± = ±h̄e±iφ ( ∂ ∂θ ± i cot θ ∂ ∂φ ) L2 = −h̄2 [ 1 sin θ ∂ ∂θ ( sin θ ∂ ∂θ ) + 1 sin2 θ ∂2 ∂φ2 ] L2fml = h̄ 2l(l + 1)fml Lzf m l = h̄mf m l [Sx, Sy] = ih̄Sz [Sy, Sz] = ih̄Sx [Sz, Sx] = ih̄Sy S2|s m〉 = h̄2s(s+1)|s m〉 Sz|s m〉 = h̄m|s m〉 S±|s m〉 = h̄ √ s(s+ 1) −m(m± 1) |s m±1〉 χ = ( a b ) = aχ+ + bχ− where χ+ = ( 1 0 ) and χ− = ( 0 1 ) S 2 = 3 4 h̄2 ( 1 0 0 1 ) Sz = h̄ 2 ( 1 0 0 −1 ) 7
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved