Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Example Problems - Advances Topics for Numerical Methods - Notes | CMSC 878R, Study notes of Computer Science

Material Type: Notes; Class: ADV TOP NUM METH; Subject: Computer Science; University: University of Maryland; Term: Fall 2003;

Typology: Study notes

Pre 2010

Uploaded on 02/13/2009

koofers-user-e86-1
koofers-user-e86-1 🇺🇸

10 documents

1 / 34

Toggle sidebar

Related documents


Partial preview of the text

Download Example Problems - Advances Topics for Numerical Methods - Notes | CMSC 878R and more Study notes Computer Science in PDF only on Docsity! FMM CMSC 878R/AMSC 698R Lecture 18 Outline • Example problem – S-expansion error; – S|S-translation error; – S|R-translation error; – R|R-translation error. • Error and Neighborhoods • Optimization of MLFMM within error bounds • Effects of machine precision R|R-operator Hn Hn RaQ) = +0" = 5) — AE __prrym 2S mt "RB n()). = mith — my! 0, m>n CRIB rm(t) = nl poe 1 0 (RIR\E) = (AIR),,2)= | 0 0 1 3f 0 S|S-operator (-1)"" yn! attm — i)! SoH) G4 are f) AD Sn), 0, m<n ED wale) = (-1)" mn! m eee men nl (mt)! 1 0 0 0 t+ 100.. (SIHEQ) = m= | f ze 1 0 2 32 36 1 S|R-operator Sn GHt) = fs t+yyrl = =f ot (1 +3 y a 7 > Ct +) em lym ait - re 1)"(n +n)! emt, Cy). mint — ("in t+}! fl f2 ae (SIRI) = a? 2 3. f2 364 of. S|S-Translation Error Translation from level α+1 to α: p first coefficients at level α can be exactly computed from p first coefficients at level α+1. Τhis is exact translation of first p coefficients! S|S-Translation Error(2) Translation from level α+1 to α: For any level α! This factor shows that we are on level α S|S-Translation Error(3) x*1 x*2 y xi In this example S|S-translations do not cause any additional error! S|R-Translation Error (3) | Pey,xi) = PO Cy x) | Long one! pol pol VY Mem - EV en m=O n=O m=0 n=O P-1 oo pol pol Y Mem t PV om YY om m=0 n=O map #=0 m=0 =O) Pol pol Polo pol pl Y Mem + VY emt Vem YD en m=O x=O m=O nap map n=O m=O x=0 Pol oo pol « Y Vem + EV on] < Den +O Dom m=O np wep #=0 m=O nap map n=O oo o o oo YVemls E Vlew| = EP eml +E Ven m=O ne, map n=O nap mm=0 map #=0 ao oo o YD ewl+ DS Dem | = LED Kem tle) er, mp mo mp mo continued —> S|R-Translation Error (4) It is really long! continued we used this S|R-Translation Error (5) That’s it! d = 1: ρ /r = 2, d = 2: ρ /r = 2(2 - √2)/√2 = 2(√2 -1) > 0.8 R|R-Translation Error(3) Indeed, in our case the regular basis functions are polynomials up to order p-1, which are obviously can be expressed via other polynomial basis up to order p-1 near arbitrary expansion center. Zero error is provided due to domains of validity are included hierarchically to larger validity domains. Total Error AbsSingleSourceError < MaxfxpansionError(p,R,r) + AdaxSRTranstationError(p, r, p) = (a) wept ole) AbsTotalError = N+» AbsSingleSourceError _ yd 2 ¢ P -M(R) pip alos) | since R > rtp, AbsTotalError < ay r+? y. Total Error(2) d=1: p=2*, r=05-2%, AbsTotalError < 32. d=2: p=(2-92)24, r=0s2-2%, QL AbsTotalError < 3 N J2 ‘ 2— /2 \ 2(/2/2+2- 2) = 3 2N (25) < 5.2(0.6 +22. 2-72 \4- 2 Both formulae can be described as AbsTotalError < CoP2'N = e(p,NL,d). Total Error(5). 2-Neighborhood. AbsTotalError < Ca?2'*N = e(p,N,L,d). Example: V = 107, £=10,d=1: pep 10 15 20 23 €,< 4 21077 4-107? 2-107! Example: V = 104, £=10,d=2: p 15 20 25 30 €,< 5+107' 2-10-7 4-10- 2-10°% Error for Different Neighborhoods k is the size of the neighborhood, m is the cell consolidation order (in our case m = 0) Optimization of MLFMM within error bounds In the example considered, the FMM error depends on: • Truncation number, p; • Max level of space subdivision, L; • Size of the neighborhood (1,2, or maybe other); • Number of sources, N; • Problem dimensionality, d. For fixed (given) N and d parameters p,L,and Neighborhood Size can be optimized. Effects of Machine Precision (1) 1.E-15 1.E-12 1.E-09 1.E-06 1.E-03 1.E-12 1.E-09 1.E-06 1.E-03 Prescribed Max Abs Error, ε M ax A bs E rr or M = N , q = q (ε), p = p (ε, l max) N=16 64 256 1024 4096 16384 Double Precision Complex Arithmetics Theoretical Error Bound Actual Max Abs Error Machine Precision Thresholds Effects of Machine Error (2) Two different computational problems: 1) Compute with a given prescribed accuracy; 2) Compute with a machine precision for a given type of float numbers. Effects of Machine Error (3) 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Number of Source Points, N C P U T im e (s ) Straightforward Setting FFIA Data Structure FFIA Max Precision C t ti ε = 10-4 ε = 10-6 M = N , q = q (ε), p = p (ε, l max) y = ax 2 y = bx FFT MLFMM MLFMM
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved