Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Volumetric Analysis: Acid-Base Titration Experiment, Lab Reports of Organic Chemistry

An overview of an acid-base titration experiment, explaining the concept of titration, standard solutions, indicators, and the equivalence point. It also discusses the importance of standardization and the role of primary and secondary standard solutions. examples of acids and their equivalent weights, as well as the importance of precision and accuracy in the experiment.

Typology: Lab Reports

2021/2022

Uploaded on 01/21/2022

ekaant
ekaant 🇺🇸

4.6

(31)

21 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download Volumetric Analysis: Acid-Base Titration Experiment and more Lab Reports Organic Chemistry in PDF only on Docsity! Exp 13 Volumetric Analysis: Acid-Base titration Titration - is the measurement of the volume of a standard solution required to completely react with a measured volume or mass of substance being analyzed (also referred to as analyte) Standard solution - is a solution containing a known concentration of solute. Standardization - the concentration of a solution is determined by using it to titrate a carefully measured quantity of a primary standard. Primary standard - is a highly purified compound that serves as a reference material in all volumetric and mass titrimetric methods. (high purity, stable toward air/dried, absence of hydrated waters, cost, soluble in solvent, large molar mass) Secondary standard solution - titrant that is standardized against a standard solution. Indicators - are added to analyte solution in order to give an observable physical change (end point) at or near the equivalence point. Typically appearance or disappearance of color, change in color, ppt formed, etc. Equivalence point - is reached when the amount of added titrant is chemically equivalent to the amount of analyte in sample. End point - physical change that can be observed associated with the conditions of equivalence. Titration error - difference in volume or mass between the equivalence point and the end point. Avg N ± s N minimum 3 runs ± 0.005 N (around ± 0.5 mL) for the std and 3 for the unknown. Note: s must match avg N decimal place 0.123 ± 0.00215 N 0.123 ± 0.002 N 0.12 ± 0.00567 N 0.12 ± 0.01 N Acid quantities 10 mL per run not 20 mL as in manual. Take 150 mL 0.1 N NaOH 45 mL 0.1000 N H2SO4 standard solution 45 mL unknown assigned by TA Example 1: Miscibility, solubility, and density exp. Discussion This experiment investigated the concept of miscibility, solubility, and density. One liquid is considered miscible in another when they form a homogenous solution. This occurred when dichloromethane and hexane were mixed. This is understandable because both of these substances are nonpolar in nature, and only substances with similar polarity tend to be miscible. This explains why water which is polar was immiscible in the other two substances. Solubility is a term used when a solid or gas dissolves in a liquid solvent. The solid iodine crystals were soluble in both nonpolar substances as evident by the change in color of solution from colorless to purple. The iodine was not soluble in the polar substance of water which did not change color. Iodine itself is nonpolar, so once again the results are expected. The density of each substance measured was determined to be 1.30 g/ml for dichloromethane, 0.677 g/ml for hexane, and 0.977 g/ml for water. All of these results are less than 3% from their respective theoretical values indicating good accuracy. Precision cannot be analyzed due to the fact that the experiment was performed only once. The main source of error in this experiment was the temperature of the solutions. The theoretical density of dichloromethane and hexane were not at the temperature of the experimental solutions (density CRC was at 15°C for dichloromethane, 20°C for hexane). Example 2: Enthalpy experiment Discussion When reactions occur, there is an accompanying change in energy. Typically this energy change is in the form of heat (enthalpy). A reaction usually either absorbs heat (endothermic) or releases heat (exothermic) to the surroundings. The enthalpy of the reaction between HCl and NaOH was investigated. It was found that -58.3 kJ/mol of heat was involved in this reaction. This means that when HCl and NaOH are reacted, 58.3 kJ/mol of heat is released to the surroundings indicating that this reaction is exothermic. The surroundings in this experiment included the salt solution produced in the reaction and the coffee cup calorimeter. This experiment was conducted three times with good precision (standard deviation of 0.1 kJ/mol) and accuracy of approximately 5% from the theoretical enthalpy of HCl (-55.4 kJ/mol). There are two main sources of error that could interfere with the accuracy and precision of this experiment. First, the calorimeter used in this experiment was a Styrofoam cup with cardboard being placed on top of the cup as the lid. Heat could escape through the unsealed lid during the experiment causing inaccurate temperature readings during the experiment. Second, the two thermometers used in the experiment were not calibrated: one each in the HCl and NaOH solutions before they were mixed. The two thermometers indicated different room temperature readings. When the two solutions were mixed, the same thermometer that was in the HCl solution was used in the mixture making the measured change in temperature for the NaOH solution questionable. However, reasonable results were still obtained despite using a calorimeter that was non-technical (coffee cup with cardboard).
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved