Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Electrical Engineering Lab: Understanding Circuits and Applying Kirchhoff's Laws, Lecture notes of Law

Instructions for an electrical engineering lab focused on learning circuit terminology, tools, and basic laws, specifically Kirchhoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL). Students will interpret circuit schematics, use a voltmeter to record voltage differences, and investigate common misconceptions. The lab aims to help students analyze the behavior of electronic components and build circuits, such as those required for autonomous vehicles.

Typology: Lecture notes

2021/2022

Uploaded on 08/01/2022

fioh_ji
fioh_ji 🇰🇼

4.5

(65)

824 documents

1 / 18

Toggle sidebar

Related documents


Partial preview of the text

Download Electrical Engineering Lab: Understanding Circuits and Applying Kirchhoff's Laws and more Lecture notes Law in PDF only on Docsity! You are required to complete a minimum of 8 Explore More! Modules during the semester, on a schedule provided to you by your TA. Most may be self- selected from the large set of those available. We encourage you to choose those that may help you personally understand a concept or gain ideas for a final project design. When you find you have extra time (> 5 minutes) after submitting your lab procedure, you must spend the remainder of the period exploring a module. Name/NetID: Teammate/NetID: Section AB/BB: 0 1 2 3 4 5 6 7 8 9 A B C D E F (circle one) Experiment #4: Validating Kirchhoff’s Laws Laboratory Outline In today’s lab we’ll carry on developing the fundamental knowledge and skills you’ll need to conduct basic experiments. You will learn much about the terminology, tools, and basic laws that govern circuits in an electrical engineering laboratory. We will continue discussing specific equipment found in the ECE 110 Lab. Keep in mind that while each piece of equipment can come in different shapes and forms based on the manufacturer and the model number, the basic principle of operation remains the same. The next few lab meetings will continue to build your skillset on these specific models in a way in which you can easily utilize other models in later labs. With the skill to use this equipment, you will be ready to analyze the behavior of electronic components and use those components to build interesting circuits such as those required of autonomous vehicles! In lecture, we will generally assume that bench equipment are ideal devices. Sources will provide whatever voltage and current is demanded of it and measuring devices will not affect the characteristics of the circuit in which it is embedded. In lab you will investigate what happens when the ideal-device assumption fails. For example, motors might demand more current you’re your batteries are capable of providing causing non-ideal battery characteristics to appear. Please use the Notes margin on the right for both notes to yourself about the experiment as well as for feedback to your TA on the quality or clarity of the lab procedure. Thanks! Learning Objectives  Interpret a breadboard design and map the circuit into a circuit schematic.  Interpret a circuit schematic and map the circuit onto a breadboard.  Use the voltmeter to record voltage differences across circuit elements.  Dispute common misconceptions of the application of Kirchhoff’s voltage law.  Use voltages to determine currents through resistors via Ohm’s law.  Dispute common misconceptions of the application of Kirchhoff’s current law.  Characterize the operation of a flex sensor.  Make observations of the voltage-to-resistance relationship of a flex sensor used in a voltage divider.  Complete the objectives (as time allows) of a semi-required, self-selected Explore More! Module. Notes: Schematics, Breadboards, and Laying Down the Law The breadboard is a very convenient tool for electrical circuit prototyping. It allows for quickly building and reconfiguring detailed circuits with few wires. Certain holes on the breadboard are internally connected. For example, the holes of each of the four long columns are connected vertically. These four columns are usually reserved for power (delivered by the positive and negative terminals of a voltage supply) and called power rails. Also, each row of five holes are connected together, although they are not connected to the other five holes on the other side of the board’s center. It is very important to understand how the board is internally connected. Figure 1: The breadboard and its internal connections. The following figure depicts a physical diagram and the corresponding circuit schematic. While both tell the same story, the physical diagram is more suggestive on the components to be used and a physical location and orientation in which you might place them. The circuit schematic is more abstract and requires that the student be familiar with the circuit symbols used for various circuit lab elements. Power (positive voltage rail) The + “rail” makes the positive battery terminal available along this vertical column. The - “rail” makes the positive battery terminal available along this vertical column. Each of the rows numbered 1-30 have two sets of 5 holes (abcde and fghij) running horizontally separated by a trench down the center of the board. In each row, abcde are connected and fghij are connected, but there is no connection across the trench. Ground (negative voltage rail) – Horizontal lines Notes: Being able to derive the circuit schematic from a breadboard is an important skill for electrical engineering. Here are a few tips to help the reverse process. a) Start from the negative voltage terminal of the power source. We will think of this as our reference voltage, often called “ground”. b) Insert a symbol for the power source and continue from the positive terminal. c) Begin to follow one circuit loop, following a component connected to the positive terminal. d) Carefully identify each component connected by the metal in the breadboard or wire as you follow your path. These devices are said to be connected on the same node. e) Complete the circuit path by reaching the negative voltage terminal of the power source f) Leave the other circuit paths alone until you complete the first path, but remember to go back and complete all the other paths from their divergence points. After each path is complete start another path until all elements are connected. g) Be careful to properly label the pins when you encounter a device with multiple leads. Notes: Figure 4: Physical diagram of a circuit containing a multi-cell battery pack, five resistors and five LEDs. Draw a circuit schematic for the physical diagram above. Remember to label all components as necessary. Do not build this circuit. Notes: Students in this course should be comfortable in wiring a circuit on breadboard when given a circuit schematic. A carelessly wired circuit can very easily include mistakes and is very difficult to debug. It is usually a much more efficient use of your time to wire a circuit carefully than rush the wiring process only to waste a lot more time trying to find the mistake on a messy circuit. Below are a list of good practices that can help keep your prototype circuits neat, organized and easy to debug. a) Reserve the four columns on the sides to be power rails. b) Use red wires to connect to the positive terminal of power source or the positive power rail; use black wires for connection to the negative rail (ground). c) Place devices with multiple pins on the board first while reserving sufficient space for all the connections they will require. d) Place devices close together when they are to be interconnected. Occasionally, clean up a working circuit to reduce size and extra wires. Cut wires to the proper length to make it fit tight to the breadboard. e) Avoid using wire when it is not necessary. Let elements like resistors and diodes span small spaces without the use of extra wires. f) Use wires of multiple colors, reserve each color for a unique kind of use. g) Complete one positive voltage source terminal’s path to ground (visually follow the schematic while completing the path) and then work on other paths that occur from any diverging point. h) Verify the final circuit with the schematic side by side. Build a circuit following schematic below. Try to obey the suggestions above. When you have completed, ask a TA to verify the circuit. This circuit will be used in later questions so do NOT dismantle the circuit after the TA has verified it. Notes: Figure 7: Same circuit with a third loop labeled. If you compute 𝑉2 + 𝑉3, do you get the result you expect? Discuss. Always remember that the voltmeter polarity must match the labeled polarity of the circuit schematic when entering voltage values to validate Kirchhoff’s Voltage Law.  Change two of the 100 Ω resistors to 220 Ω as shown in Figure 8, then continue. Notes: Figure 8: Circuit schematic for investigating KCL. Notice that we have changed two resistor values from before! Use a voltmeter to measure the voltage across each resistor, 𝑉1 through 𝑉3, with polarities as shown. Enter these values in the table below. Measured Voltage 𝑉1 𝑉2 𝑉3 Table 3: In the next portion of the lab, you will be determining current by measuring voltage across a resistor. Here is a quick reminder of what to do…  Observe the direction of the current arrow.  Place the + port of the voltmeter at the side of the resistor corresponding with the beginning of the arrow.  Place the − port of the voltmeter at the side of the resistor corresponding with the end of the arrow.  Compute 𝐼 = 𝑉/𝑅 while trusting that the measured 𝑉 has the correct sign.  When voltage has been measured in the opposite manner (+ at the end of the current arrow and − at the end) you will need to negate the equation due to your reversal of the polarity, 𝐼 = −𝑉/𝑅. Since you will be using 𝑉1, 𝑉2, 𝑉3 as measured above to complete Table 4, half of your equations will require a negative sign. Notes: Figure 10: Circuit schematic for investigating KCL with over-defined current variables. Properly-signed Ohm’s Law Equation Calculated current 𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 Table 4: Complete the table above by inserting the Ohm’s Law equation (with the proper sign ±) such that each current will have both the correct sign and magnitude. Each equation will include one of 𝑉1 through 𝑉3 and either 100 Ω or 220 Ω. Discuss you decision making for the signs in the space below. Note: Ohm’s Law, properly applied, also maintains that current will flow in the direction of voltage drop in an Ohmic device. When the current arrow points from the + to the - of the defined voltage, 𝑅 = 𝑉 𝐼 will be a positive value and 𝐼 = 𝑉 𝑅 will have the correct sign. When the current arrow (polarity) is in opposition to this rule, merely add a negative sign to Ohm’s law to reverse the polarity of the voltage such that 𝐼 = − 𝑉 𝑅 . Notes: Note: the flex sensor should change by more than 50% of its nominal value when bent to 90 degrees. For example, if an unbent flex sensor has a resistance of 10 𝑘Ω, then it should read at least 15 𝑘Ω when bent. If you do not have two flex sensors that meet this criteria, please see your TA. Measure the resistance for flex angles of 0, 45, and 90 degrees (approximately), for all the flex sensors you and your partner have. Use a permanent marker to number your flex sensors. degrees 𝑅𝑓𝑙𝑒𝑥 #1 𝑅𝑓𝑙𝑒𝑥 #2 𝑅𝑓𝑙𝑒𝑥 #3 𝑅𝑓𝑙𝑒𝑥 #4 comments 0 45 90 Table 4: Plot your results with the approximate angle on the x-axis and the resistance 𝑅𝑓𝑙𝑒𝑥 on the y-axis. Print this plot and attach it to your report.  Choose the flex sensor with the most change for the next part. Use your breadboard to wire the circuit as shown in the schematic below with 𝑅𝑏𝑖𝑎𝑠 set to the value 𝑅𝑓𝑙𝑒𝑥(𝑎𝑡 0°). Fill in the table with your measurements. Notes: Figure 10: A voltage divider circuit typical for resistive sensors. 𝑉𝐴 at 0⁰ 𝑉𝐴 at 45⁰ 𝑉𝐴 at 90⁰ comments Table 5: This circuit is often called a voltage divider. While the flex sensor transfers mechanical change to a varying resistance, the voltage divider translates the resistance to a voltage. The voltage may be used by other electronic components which can respond to the flexing sensor or be measured by other electronic devices such as a microprocessor (like the popular Arduino). A voltage divider is simple and is a very common method of integrating resistive sensors into a circuit. Careful selection of the resistance values 𝑅𝑓𝑙𝑒𝑥 and 𝑅𝑏𝑖𝑎𝑠 will allow the designer to gain a broad range of voltages (inherently immune to noisy measurement errors) while reducing energy wasted. Notes: Conclusion Complete this conclusion by discussing your findings in this lab. Be sure to specifically address the equipment, schematics, Ohm’s Law, KVL and KCL and how these things are valuable to us. What You Learned In this lab, you have both improved your understanding of the DC equipment as you used to confirm Kirchhoff’s circuit laws. You should be able to read circuit schematics and record measurements that are consistent with the indicated polarity of the labeled voltages and currents. You should be able to confirm that voltage measurements conform to KVL and that current measurements conform to KCL and use inconsistencies to identify erroneous measurements. You should be able to identify a voltage divider and build a circuit voltage divider that utilizes a flex sensor that outputs a voltage as the sensor bends. Explore More! At the end of each regular lab procedure, as time permits, you will be provided with materials to continue to improve your mastery of the materials. The suggested modules for this lab will be provided by the TA. You are to work on these as long as time permits. The modules will be submitted to your TA when finished. Completion of eight modules will count in your final grade. Recommended module for today: Explore More! Arduino as a Power Supply.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved