Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Physics 406 Final Exam: Thermodynamics and Statistical Mechanics, Exams of Physics

A portion of a physics final exam focusing on thermodynamics and statistical mechanics. It includes problems related to energy levels, energy distributions, and the fermi-dirac distribution. Students are expected to apply the equipartition theorem, calculate energy levels, and understand the concept of fermions.

Typology: Exams

Pre 2010

Uploaded on 09/02/2009

koofers-user-wvf-1
koofers-user-wvf-1 🇺🇸

10 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download Physics 406 Final Exam: Thermodynamics and Statistical Mechanics and more Exams Physics in PDF only on Docsity! Ethermal 0.191 eV= d) Three translational d.o.f. Etrans 3 ε⋅:= Etrans 7.043 10 21− × J= Etrans 0.044 eV= e) Two rotational d.o.f. Erot 2 ε⋅:= Erot 4.695 10 21− × J= Erot 0.029 eV= f) One molecule: Einternal Ethermal µ 1⋅+:= Einternal 6.56− 10 20− × J= Einternal 0.409− eV= Physics 406 Final Exam 12/16/05 1. Natoms 3:= T 340 K⋅:= µ 0.6− eV⋅:= a) Equipartition Theorem: ε 1 2 k⋅ T⋅:= ε 2.348 10 21−× J= ε 0.015 eV= b) For linear molecules: Nν 6 Natoms⋅ 5−:= Nν 13= c) Equipartition Theorem: Ethermal Nν ε⋅:= Ethermal 3.052 10 20− × J= 2 7 55 3.125 103×= 27 128= 55 27⋅ 400000= 55 27⋅ Total 0.044= Total 9120800= Ptotal 1:= b) The most probable energy macrostate is E1 = 3. c) A total of 9120800. d) S k ln 35 47⋅( )⋅:= S 2.099 10 22−× J K = S 1.31 10 3−× eV K = S 15.197 k= e) Sf k ln Total( )⋅:= Sf 2.213 10 22− × J K = Sf 1.382 10 3− × eV K = Sf 16.026 k= f) Sinitial k ln 2 5 57⋅( )⋅:= Sinitial 2.034 10 22−× JK= ∆S Sf Sinitial−:= ∆S 1.787 10 23− × J K = ∆S 1.116 10 4−× eV K = ∆S 1.294 k= Physics 406 Final Exam 12/16/05 2. a) The poossible energy macrostates are listed below. ν1 10:= ν2 14:= E1 E2 Etotal Ω1 Ω2 Ωc P(E1) ___________________________________________________________________ 2 5 7 25 32= 57 7.813 104×= 25 57⋅ 2500000= 25 57⋅ Total 0.274= 3 4 7 35 243= 47 1.638 104×= 35 47⋅ 3981312= 35 47⋅ Total 0.437= 4 3 7 45 1.024 103×= 37 2.187 103×= 45 37⋅ 2239488= 45 37⋅ Total 0.246= 5 dQldt 373.235 watts=dQldt dQhdt dWdt−:=e) dWdt 226.765 watts=dWdt ηactual dQhdt⋅:=d) ηactual 0.378=ηactual COU ηcarnot⋅:= COU 60 %⋅:= dQldt 222.058 watts=dQldt dQhdt dWdt−:=b) dWdt 377.942 watts=dWdt ηcarnot dQhdt⋅:=c) ηcarnot 0.63=ηcarnot 1 Tlow Thigh −:=a) dQhdt 600 watts⋅:=Thigh 600 oC⋅ 273.15 K⋅+:=Tlow 50 oC⋅ 273.15 K⋅+:=5. Physics 406 Final Exam 12/16/05 Physics 406 Final Exam 12/16/05 6. a) First: dE = δQ - δW + µ*dN, where dE is the energy change of the system, δQ is the heat added, δW is the work done by the system, µ is the chemical potential (per particle) and dN is the number of particles added. Second: dS > 0 for systems approaching equilibrium and dS = 0 for systems at equilibrium where S is the entropy. Third: S --> 0 at T--> 0, where S is the entropy. b) The First and Third are rigorous while the Second is only statistically true [It is possible for dS < 0 in small systems]. c) Measureable properties of a system include E, N and µ. The process dependent quantites are Q and W. d) 1) The heat capacity of all systems must appoach 0 as T --> 0. 2) The volume of all systems is finite as T --> 0. S k ln 1 1 e β− εo 2 µ⋅−( )⋅ − ⎡ ⎢ ⎣ ⎤ ⎥ ⎦ β εo 2 µ⋅−( )⋅ e β− εo 2 µ⋅−( )⋅ 1 e β− εo 2 µ⋅−( )⋅ − ⋅+ ⎡ ⎢ ⎢ ⎣ ⎤ ⎥ ⎥ ⎦ ⋅:= S k ln z( ) β Eavg µ Navg⋅−( )⋅+⎡⎣ ⎤⎦⋅:=d) pavvg 0:= Since z does not depend on the volume this quantity must be zerto. pavg 1 β d dV ⋅ ln z( )⋅:=c) Eavg εo e β− εo 2 µ⋅−( )⋅ ⋅ 1 e β− εo 2 µ⋅−( )⋅ − :=Eavg µ Navg⋅ e β− εo 2 µ⋅−( )⋅ − εo 2 µ⋅−( )−⎡⎣ ⎤⎦⋅ 1 e β− εo 2 µ⋅−( )⋅ − +:= Eavg µ Navg⋅ d dβ ln 1 e β− εo 2 µ⋅−( )⋅ − ⎡ ⎣ ⎤ ⎦⋅+:=Eavg µ Navg⋅ d dβ ln 1 1 e β− εo 2 µ⋅−( )⋅ − ⎡ ⎢ ⎣ ⎤ ⎥ ⎦ ⋅−:= Eavg µ Navg⋅ d dβ ln z( )⋅−:=b) Navg 2 e β− εo 2 µ⋅−( )⋅ ⋅ 1 e β− εo 2 µ⋅−( )⋅ − :=Navg 1−( ) β e β− εo 2 µ⋅−( )⋅ − 2⋅ β⋅ 1 e β− εo 2 µ⋅−( )⋅ − ⋅:= Navg 1−( ) β d dµ ⋅ 1 e β− εo 2 µ⋅−( )⋅ − ⎡ ⎣ ⎤ ⎦⋅:= Navg 1 β d dµ ⋅ ln 1 1 e β− εo 2 µ⋅−( )⋅ − ⎡ ⎢ ⎣ ⎤ ⎥ ⎦ ⋅:=Navg 1 β d dµ ⋅ ln z( )⋅:=a) z 1 1 e β− εo 2 µ⋅−( )⋅ − :=7. Physics 406 Final Exam 12/16/05
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved