Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Fluid Mechanics Formula Cheat Sheet, Cheat Sheet of Fluid Mechanics

Formula cheat sheet on Fluid Mechanics (prof. G.H. McKinley and A.E. Hosoi) | MIT

Typology: Cheat Sheet

2019/2020
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 10/09/2020

aristel
aristel 🇺🇸

4.2

(31)

80 documents

Partial preview of the text

Download Fluid Mechanics Formula Cheat Sheet and more Cheat Sheet Fluid Mechanics in PDF only on Docsity! 2.25 Fluid Mechanics Professors G.H. McKinley and A.E. Hosoi Stream Functions for planar flow (satisfy \ · iv = 0) Planar flow: Cartesian (x, y,/z) vx = ∂ψ ∂y vy = − ∂ψ ∂x vz = 0 Planar flow: Cylindrical (r, θ,//z) vr = 1 r ∂ψ ∂θ vθ = − ∂ψ ∂r vz = 0 Axisymmetric flow: Cylindrical (r,/θ, z) vr = −1 r ∂ψ ∂z vθ = 0 vz = 1 r ∂ψ ∂r Axisymmetric flow: Spherical (r, θ,//ϕ) vr = 1 r2 sin θ ∂ψ ∂θ vθ = − 1 r sin θ ∂ψ ∂r vϕ = 0 Potential Functions (iv = \φ, requires \ × iv = 0, \2φ = 0) Cartesian coordinates (x, y, z) vx = ∂φ ∂x vy = ∂φ ∂y vz = ∂φ ∂z Cylindrical coordinates (r, θ, z) vr = ∂φ ∂r vθ = 1 r ∂φ ∂θ vz = ∂φ ∂z Spherical coordinates (r, θ, ϕ) vr = ∂φ ∂r vθ = 1 r ∂φ ∂θ vϕ = 1 r sin θ ∂φ ∂ϕ uniform stream x y U V U, V > 0shown for W (z) = (U − iV )z φ = Ux + V y ψ = −V x + Uy vx = U vy = V source (Q>0) or sink (Q<0) shown for z0 r θ r ′ θ ′ Q > 0 W (z) = Q 2π ln(z − z0) φ = Q 2π ln r ' ψ = Q 2π θ ' vr = Q 2π 1 r' vθ = 0 free vortex shown for Γ > 0 r θ r ′ θ ′ z0 W (z) = −iΓ 2π ln(z − z0) φ = Γ 2π θ ' ψ = − Γ 2π ln r ' vr = 0 vθ = Γ 2π 1 r' K > 0 forced vortex shown for r θ r ′ θ ′ z0 W (z) = � φ = � ψ = −Kr'2 2 vr = 0 vθ = Kr' 1 � � doublet (x-orientation) shown for r θ r ′ θ ′ c > 0 z0 W (z) = c z−z0 φ = c cos θ ' r ' ψ = − c sin θ ' r ' vr = − c cos θ ' r '2 vθ = − c sin θ ' r '2 doublet (y-orientation) shown for r θ r ′ θ ′ c > 0 z0 W (z) = ic z−z0 φ = c sin θ ' r ' ψ = c cos θ ' r ' vr = − c sin θ ' r '2 vθ = c cos θ ' r '2 sphere (axisymmetric flow) shown for r θ r ′ θ ′ U U > 0ϕ z0 W (z) = φ + iψ φ = U cos θ ' r ' + R 3 2r '2 ψ = 1 2 U sin 2 θ ' r '2 − R3 r ' vr = U cos θ ' 1 − R3 r '3 vθ = −U sin θ ' 1 + R 3 2r '3 vϕ = 0 shear flow x y shown for A A > 0 z0 W (z) = φ = ψ = Ay '2 vx = 2Ay ' vy = 0 vz = 0 stagnation point flow x y shown for A > 0 z0 W (z) = 1 2 A(z − z0) 2 φ = 1 2 A(x '2 − y '2) ψ = Ax ' y ' vx = Ax ' vy = −Ay ' vz = 0 Notes: z = x + iy z0 = x0 + iy0 0 ≤ θ < 2π = r ' = (x − x0)2 + (y − y0)2 1 2 θ ' = tan−1 y−y0 x−x0 W (z) = φ + iψ dW dz = vx − ivy dW dz = (vr − ivθ)e −iθ vx = vr cos θ − vθ sin θ vy = vr sin θ + vθ cos θ vr = vx cos θ + vy sin θ vθ = −vx sin θ + vy cos θ 2 @ @
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved