Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Force on Charge - Electricity and Magnetism - Solved Exam, Exams of Electromagnetism and Electromagnetic Fields Theory

This is the Solved Exam of Electricity and Magnetism which includes Force on Charge, Image Charge Drawn, Maxwell Equations, Electromagnetic Waves, Inner Cylinder, Line Charge Density, Coaxial Cylinders, Gauss’ Law etc. Key important points are: Force on Charge, Image Charge Drawn, Maxwell Equations, Electromagnetic Waves, Inner Cylinder, Line Charge Density, Coaxial Cylinders, Gauss’ Law, Capacitance Per Unit Length

Typology: Exams

2012/2013

Uploaded on 02/20/2013

saklani
saklani 🇮🇳

3

(2)

46 documents

1 / 7

Toggle sidebar

Related documents


Partial preview of the text

Download Force on Charge - Electricity and Magnetism - Solved Exam and more Exams Electromagnetism and Electromagnetic Fields Theory in PDF only on Docsity! Solutions to PC2131 AY0506 Sem 2 Paper Part I 1. Based on the diagram with the image charge drawn Force on charge Q = 2 0 2 2 0 2 16)2(4 D Q D Q   (downwards) 2. Maxwell equations: 0   E  0 B  t B E     t E JB     000  yctxkEE ˆ)(cos0   zctxkBB ˆ)(cos0   For electromagnetic waves, 0 ,0  J   0)(cos0    ctxkE y E  0)(cos0    ctxkB z B  yctxkkcEyctxkE tt E zctxkkcBzctxkB tt B ˆ)(sinˆ)(cos ˆ)(sinˆ)(cos 00 00               yctxkkByctxkB x ctxkB zyx zyx B zctxkkEzctxkE x ctxkE zyx zyx E ˆ)(sinˆ)(cos )(cos00 ˆˆˆ ˆ)(sinˆ)(cos 0)(cos0 ˆˆˆ 00 0 00 0                           Since t B E     , )(sin)(sin 00 ctxkkcBctxkkE  0 0 B E c  Since t E t E JB        00000  , 00 2 0 0 00 0000 1 1 )(sin)(sin       c cc B E ctxkkcEctxkkB D D Q Q (image) National University of Singapore Physics Society 2009 3. When charges are stored, let the inner cylinder have line charge density  , the outer cylinder have line charge density  For region between the 2 coaxial cylinders Using Gauss’ law,   0 r encQAdE  r E l rlE r r 0 0 2 )2(       mmrmmrrdEV BA r r B A 1 ,2 where    2ln 22 0 1 2 0     rr r r dr r rdEV B A    Capacitance per unit length VVl Q l C      1 12 0 186.0 2ln )1085.8)(32.2(2 2ln 2       nFm V r  Capacitance per unit length 1186.0  nFm 4. Using Faraday’s law, t B E        AdBdt d ldE  For ,ar  BrrBdrrB T rE r    22 0 2 1 2 1 )2( 2 )2( 1 )2(     ˆ 4 1 rBE   For ,ar  BadrrB T rE a  2 0 2 1 )2( 1 )2(     ˆ 4 1 2 B r a E   The polarization is only in the dielectric itself only, there is no polarization outside the dielectric.    ˆ 4 )1( )1( 000 rBEEP r re    rBrBP rrb       4 )1( 4 )1( 00            0ˆ  nPb   (direction of zn ˆˆ  for top and bottom of disk, direction of ̂ˆ n for the side of disk, both directions are perpendicular to ̂ ) 1 mm 2 mm 32.2r a  B  s National University of Singapore Physics Society 2009 2(b) 0)(   dVBAdB    belowabove BB Since MBH  0 1  , )(   belowabovebelowabove MMHH Using encf IldH   fbelowabove fbelowabove KHH lKlHH   |||| |||| )( For parallel component of H  , parallel to K  , we draw another amperian loop which side l is parallel to K  , the current enclosed is 0. nKHH fbelowabove ˆ ||||   2(c) dt d dt dI M   When current flows through solenoid A, Total flux experienced by solenoid B, BAa A Btotal NrIa N BAN 20   (shown) 2 0 2 0 2 0 a rNN M dt dI a rNN dt dI M dt dI a rNN dt d ABA aABAa aABA       2(d) a rNN M ABA 2 0  3(a) For ,cosrV  rrR )( ,  cos)(      c d d d d d d d d d d d d r dr d rdr dR r dr d R c                   2)cossin2( sincos 1 sin sincos 1 sin sincos 1)(cos sin sincos 1)( sin sin 1 2)( 11 2 2 22           cosr is a solution to Laplace equation. || aboveH || belowH National University of Singapore Physics Society 2009 For 2 cos r V   , 2 1 )( r rR  ,  cos)(  2 22 )) 2 (( 1 2 22 3 222            r r rdr d r r r dr d r dr dR r dr d R c c d d d d       2 )( sin sin 1    2 cos r  is a solution to Laplace equation. (shown) 3(b) Using spherical coordinates, there is no  dependence. At ar  , 0V For large r, placing the E  field in the z direction, cos00 rEzEV  Here cannot assume that V is zero at infinity. Solution for Laplace equation:        0 1 0 )(cos)(cos),( n n n n n n n n PrBPrArV  Since the solution for large r is cos0rE , no larger power of r is permissible. For smaller powers, we need terms which can cancel out cos so that V can be 0 on the surface. 2 3 00 cos cos),( r a ErErV   By uniqueness theorem, since the above solution satisfy the boundary conditions and the Laplace equation, the potential outside a grounded spherical conductor in uniform electric field will have the above solution. 3(c) Using Poisson’s equation, 0 2    V 0 2 2    dx Vd vJ  By conservation of energy, eVmv 2 2 1 eV m J v J m eV v 2 2    dx dV V e mJ dx Vd dx dV V e mJ dx Vd 2 1 0 2 2 2 1 0 2 2 2 2       s V = 0 0VV  National University of Singapore Physics Society 2009 Integrating both sides with respect to x, CV e mJ dx dV cV e mJ dx dV             2 1 0 2 2 1 0 2 2 4 )2( 22 1   When 0V , 0 dx dV E , 0C 2 0 2 3 0 2 1 0 2 2 1 2 2 2 1 2 1 0 2 22 3 3 2 2 3 2 3 2 1 2 4 x e mJ V x e mJ dx dV V e mJ dx dV V dx Vd V V e mJ dx dV                    At 0 , VVsx  (shown) 2 9 4 22 3 3 2 2 3 02 0 2 0 2 3 0 V m e s J s e mJ V     National University of Singapore Physics Society 2009
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved