Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Formula sheet-physics, Cheat Sheet of Physics

Physics formula sheet in 2d vectors, algebra & trigonometry, general kinematics, gravitation, simple harmonic motion, mechanical waves, momentum, impulse and system particles.

Typology: Cheat Sheet

2021/2022

Uploaded on 02/07/2022

anarghya
anarghya 🇺🇸

4.2

(19)

10 documents

Partial preview of the text

Download Formula sheet-physics and more Cheat Sheet Physics in PDF only on Docsity! Formula Sheet - Physics 111 x y ~Ax ~Ay ~A θ 2D Vectors: A = Ax + Ay = (Ax, Ay)∣∣∣A∣∣∣ = A = √ A2 x +A2 y Ax = A cos θ Ay = A sin θ tan θ = Ay Ax Algebra & Trigonometry: ax2 + bx+ c = 0 ⇒ x = −b± √ b2 − 4ac 2a 2 sin2 x+ cos (2x) = 1 cos (x+ y) = cosx cos y − sin x sin y 2 cos2 x− cos (2x) = 1 sin (x+ y) = sin x cos y + cosx sin y sin2 x+ cos2 x = 1 2 cosx cos y = cos (x− y) + cos (x+ y) sec2 x− tan2 x = 1 2 sin x sin y = cos (x− y)− cos (x+ y) csc2 x− cot2 x = 1 2 sin x cos y = sin (x− y) + cos (x+ y) Conversion factors: femto- (f) = 10−15 pico- (p) = 10−12 nano- (n) = 10−9 micro- (µ) = 10−6 milli- (m) = 10−3 centi- (c) = 10−2 kilo- (k) = 103 mega- (M) = 106 giga- (G) = 109 tera- (T) = 1012 1 yd=3 ft = 36 in 1 in=2.54 cm 1 mi=1609 m 1 lb=4.448 N 1 gal=3.78541 L 1 m3=1000 L 1 atm=1.013× 105 Pa 1 cal=4.186 J =760 mm Hg 1 Cal=1000 cal Geometry Circle: Perimeter = 2πr Area = πr2 Sphere: Surface Area = 4πr2 Volume = 4 3πr 3 Cylinder: Surface Area = 2πr2 + 2πrh Volume = πr2h Few Physical Constants & Quantities: REarth = 6.38× 106 m g = 9.80 m/s2 MEarth = 5.97× 1024 kg G = 6.67× 10−11 Nm2/kg2 Msun = 1.99× 1030 kg R = 8.314 J/mol ·K rsun−Earth = 1.496× 1011 m kB = 1.381× 10−23 J/K STP : 1 atm, 273 K NA = 6.022× 1023 mol−1 vsound,air = 343 m/s σ = 5.67× 10−8 W/m2K4 ρwater = 1000 kg/m3 General Kinematics vavg = ∆r ∆t = r2 − r1 t2 − t1 v = lim ∆t→0 ∆r ∆t aavg = ∆v ∆t = v2 − v1 t2 − t1 a = lim ∆t→0 ∆v ∆t constant acceleration 1D motion Kinematics x = x0 + v0t+ 1 2at 2 v = v0 + at v2 = v2 0 + 2a∆x v = v + v0 2 Constant acceleration Kinematics 2D: x = x0 + v0xt+ 1 2axt 2 vx = v0x + axt v2 x = v2 0x + 2ax∆x y = y0 + v0yt+ 1 2ayt 2 vy = v0y + ayt v2 y = v2 0y + 2ay∆y vx = vx + v0x 2 vy = vy + v0y 2 Projectile motion (ax = 0 and ay = −g) x = x0 + vxt vx = constant. y = y0 + v0yt− 1 2gt 2 vy = v0y − gt v2 y = v2 0y − 2g∆y vy = vy + v0y 2 v2 = v2 x + v2 y v2 = v2 0 − 2g∆y Relative motion ra,c = ra,b + rb,c va,c = va,b + vb,c aa,c = aa,b + ab,c Forces ∑ F = ma FAB = −FBA Fspring = −kx F g(≡W ) = mg fk = µkN fs ≤ µsN Circular motion ω = ∆θ ∆t α = ∆ω ∆t s = Rθ v = Rω atan = Rα a = atan + ar arad = v2 R = ω2R a = √ a2 tan + a2 r Constant α: ω = ω0 + αt ω2 = ω2 0 + 2α∆θ ω = ω + ω0 2 θ = θ0 + ω0t+ 1 2αt 2 Uniform Circular Motion(α = 0) : T = 1 f = 2π ω = 2πR v Work and Energy W =Fd cos θ ∆KE = Wtotal KE = 1 2mv 2 = p2 2m P =W t = Fv cos θ ∆PE = −Wcons ∆E = Wnon−cons E =PE +KE ∆E = ∆PE + ∆KE PEs = 1 2kx 2 PEgrav = mgy Gravitation F g = −GmM r2 r̂ g = GM r2 T 2 r3 = 4π2 GM vcirc orbit = √ GM r Momentum, Impulse, System of particles F net = ∆p ∆t = mtotacm p = mv J = ∆p = F net,avg∆t rcm = ∑ miri∑ mi vcm = ∑ mivi∑ mi acm = ∑ miai∑ mi∑ pi = mtotvcm If F net = 0 ⇒ ∆p = 0 ⇒ p = p′ Elastic Collision: KEbefore = KE′after vA,x − vB,x = − ( v′A,x − v′B,x ) Rigid-body and Rotational motion KE = KEtr +KErot KErot = 1 2Iω 2 KEtr = 1 2mv 2 cm τ = rF sin θ = r⊥F = rF⊥ ∑ τ = I~α W = τ∆θ L = rp sin θ = r⊥p = rp⊥ L = Iω P = τω ∑ τ = ∆L ∆t if ∑ ~τ = 0 ⇒ ∆L = 0 ⇒ L = L′ Icm for few objects about symmetry axis: Isolid sphere = 2 5mr 2 Isolid cylinder = 1 2mr 2 Ihollow sphere = 2 3mr 2 Ihollow cylinder = mr2 Irod = 1 12m` 2 Irectangle = 1 12m ( a2 + b2 ) a b Elasticity E = F/A ∆`/`0 B = − ∆P ∆V/V0 G = F||/A x/h Fluids P = F A P = P0 + ρgh ρ = m V FB = ρFVdisplg A1v1 = A2v2 = const P + ρgy + 1 2ρv 2 = const Simple Harmonic Motion x = A cos(ωt) v = −Aω sin(ωt) a = −Aω2 cos(ωt) ωspring = √ k m T = 1 f = 2π ω Tpendulum = 2π √ ` g Mechanical Waves v = λf ω = 2πf v = √ F m/` f = 1 T 〈P 〉 = 1 2ω 2A2 √ µF I = P 4πr2 sound: v = √ γRT M γair = 1.40 β = (10 dB) log10 I I0 fbeat = |fa − fb| I0 = 10−12 W/m2 fobs = vsnd ± vobs vsnd ± vsrc fsrc Interference: d2 − d1 = n λ 2 n = 0,±2,±4, . . . (constructive) n = ±1,±3,±5, . . . (destructive) Standing wave normal modes: fn = nf0 = nv 2` n = 1, 2, 3, . . . (both ends either fixed or free) = nv 4` n = 1, 3, 5, . . . (one end fixed) Temperature and Heat TK = TC + 273.15 K TC = 5 9 (TF − 32 ◦C) ∆` = α`0∆T Qrad t = εσA ( T 4 − T 4 s ) Qcond t =kATH − TC ` ∆V = βV0∆T Q = mc∆T Q =nCmolar∆T Q = mL Ideal Gas pV = nRT = NkT vrms = √ 3kT m = √ 3RT M n = N NA = m M 〈KE〉 = 3 2kT = 1 2mv 2 rms k = R NA = 1.381× 10−23J/K U = 3 2nRT (monoatomic) Thermodynamics ∆U = Q−W W = p∆V W = |QH| − |QL| eengine = W QH COPrefrig = QL |W | COPideal pump = TH TH − TL eideal = 1− TL TH COPpump = ∣∣∣∣QH W ∣∣∣∣ COPideal refrig = TL TH − TL ∆S = Q T ideal : TL TH = ∣∣∣∣QL QH ∣∣∣∣
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved