Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions for Problem Set #3 in Quantum Mechanics, Assignments of Health sciences

Solutions for problem set #3 in a quantum mechanics course. It covers topics such as normalization of wave functions, permutations, and commutation relations. The solutions involve calculations using creation and annihilation operators, fock space, and coherent states.

Typology: Assignments

Pre 2010

Uploaded on 08/26/2009

koofers-user-t78-1
koofers-user-t78-1 🇺🇸

5

(1)

10 documents

1 / 9

Toggle sidebar

Related documents


Partial preview of the text

Download Solutions for Problem Set #3 in Quantum Mechanics and more Assignments Health sciences in PDF only on Docsity! PHY–396 K. Solutions for problem set #3. Problem 1(a): First, let us verify eq. (3) for a wave function Ψ(x1, . . . ,xN ) of the form (1), that is, for the quantum state |N,Ψ〉 = |α1, . . . , αN 〉 = ∣ ∣{nβ} 〉 . Note that the number of distinct permutations of N one-particle modes α1, . . . , αN corresponding to occupation numbers nβ is precisely ( N ! / ∏ β nβ ! ) , so the wave function (1) is properly normalized. Let us define Ψ′(x1, . . . ,xN−1) according to eq. (3). Using orthonormality of the 1-particle wave functions φβ(x), we have Ψ′(x1, . . . ,xN−1) = √ ∏ β nβ ! N − 1! ∫ d3xN φ ∗ γ(xN ) ∑ (α̃1,...,α̃N ) φα̃1(x1) · · ·φα̃N (xN ) = √ ∏ β nβ ! (N − 1)! ∑ (α̃1,...,α̃N ) φα̃1(x1) · · ·φα̃N−1(xN−1)× δα̃N ,γ , (S.1) which leads to two distinct situations: (A) If nγ = 0 i.e., if none of the α1, . . . , αN equals γ, then for any permutation (α̃1, . . . , α̃N ) α̃n 6= γ and every term in the sum (S.1) vanishes, thus Ψ′(x1, . . . ,xN−1) ≡ 0. Clearly, this agrees with âγ ∣ ∣{nβ} 〉 = 0 for nγ = 0. (B) On the other hand, if nγ > 0 then without loss of generality we let αN = γ (remember that the list (α1, . . . , αN ) id un-ordered). Consequently, the δα̃N ,γ factor in eq. (S.1) restricts permutations (α̃1, . . . , α̃N ) to α̃N = γ = αN , and since we count distinct permutations only, we have Ψ′(x1, . . . ,xN−1) = √ ∏ β nβ ! N − 1! ∑ distinct permutations (α̃1,...,α̃N−1) of (α1,...,αN−1) φα̃1(x1) · · ·φα̃N−1(xN−1). (S.2) Comparing this expression to eq. (1), we see that Ψ′ is the wave function of the state |α1, . . . , αN−1〉 = ∣ ∣ ∣ {n′β = nβ − δβ,γ} 〉 , except for the normalization factor √ ∏ β nβ! N − 1! = √ nγ × √ ∏ β n ′ β ! N − 1! instead of √ ∏ β n ′ β ! N − 1! . (S.3) 1 In other words, ∣ ∣(N − 1),Ψ′ 〉 = √ nγ |α1, . . . , αN−1〉 = âγ |α1, . . . , αN 〉 , for αN = γ, (S.4) and we already saw that for α1, . . . , αN 6= γ, |Ψ′〉 = 0 = â |α1, . . . , αN 〉 as well. Thus, ∀ |Ψ〉 = |α1, . . . , αN 〉 : ∣ ∣Ψ′ 〉 = âγ |Ψ〉 , (S.5) and by linearity of eq. (3) it follows that |Ψ′〉 = âγ |Ψ〉 for any linear combination of the |α1, . . . , αN 〉 states. As we saw in class, such states form a complete basis of the N -boson Hilbert space, therefore ∣ ∣Ψ′ 〉 = âγ |Ψ〉 ∀ |Ψ〉 ∈ HN bosons . Q.E .D. Problem 1(b): First, consider a one-body operator of the form Ô = |α〉 〈β|. For this operator, the second- quantized Ô (2) tot is simply â † αâβ while the first-quantized Ô (1) tot has matrix elements 〈N,Ψ1| Ô(1)tot |N,Ψ2〉 = = N ∑ i=1 ∫ d3x1 · · · ∫ d3xN ∫ d3x′i Ψ ∗ 1(x1, . . . ,xi, . . . ,xN )φα(xi)φ ∗ β(x ′ i)Ψ2(x1, . . . ,x ′ i, . . . ,xN ) = N ∫ d3x1 · · · ∫ d3xN ∫ d3x′N Ψ ∗ 1(x1, . . . ,xN−1,xN )φα(xN )φ ∗ β(x ′ N )Ψ2(x1, . . . ,xN−1,x ′ N ) = ∫ d3x1 · · · ∫ d3xN−1Ψ ′∗ 1 (x1, . . . ,xN−1)Ψ ′ 2(x1, . . . ,xN−1) where the second equality follows from the total symmetry of the wave functions Ψ1 and Ψ2, and the (N − 1)-particle wave functions Ψ′1,2(x1, . . . ,xN−1) on the last line are defined according to eq. (3) (but using âα instead of âγ for the Ψ ′ 1 and âβ for the Ψ2). In light of problem (a), this means 〈N,Ψ1| Ô(1)tot |N,Ψ2〉 = 〈 (N − 1),Ψ′1|(N − 1),Ψ′2 〉 = 〈N,Ψ1| â†αâβ |N,Ψ2〉 ≡ 〈N,Ψ1| Ô(2)tot |N,Ψ2〉 . (S.6) Now we need to extend this result to generic one-body operators. Any operator R̂1 in the one- particle Hilbert space can be decomposed as R̂1 = ∑ α,β |α〉Rα,β 〈β| where Rα,β are the matrix 2 Problem 1(e): First, let us calculate the Fock-space commutator [↵âν , â † αâ † β âγ âδ]. Using the commutators [↵âν , â † α] = δν.αâ † µ and [â † µâν , âβ ] = −δµ.β âν (cf. previous homework) and applying the Leibniz rule, we have [↵âν , â † αâ † β âγ âδ] = [â † µâν , â † α]â † β âγ âδ + â † α[â † µâν , â † β]âγ âδ + â † αâ † β[â † µâν , âγ ]âδ + â † αâ † β âγ [â † µâν , âδ] = δναâ † µâ † β âγ âδ + δνβ â † αâ † µâγ âδ − δµγ â†αâ † β âν âδ − δµδâ†αâ † β âγ âν . (S.17) Next, given a second-quantized one-body operator  = ∑ µ,ν 〈µ| Â1 |ν〉 â † µâν and a second- quantized two-body operator B̂ = 12 ∑ α,β,γ,δ 〈α| ⊗ 〈β| B̂2 |γ〉 ⊗ |δ〉 â † αâ † β âγ âδ, we calculate [Â, B̂] = ∑ µ,ν,α,β,γ,δ 〈µ| Â1 |ν〉 〈α⊗ β| B̂2 |γ ⊗ δ〉 [↵âν , â†αâ†β âγ âδ] 〈〈using (S.17)〉〉 = ∑ µ,β,γ,δ ↵⠆ β âγ âδ × ∑ ν 〈µ| Â1 |ν〉 〈ν ⊗ β| B̂2 |γ ⊗ δ〉 + ∑ α,µ,γ,δ â†αâ † µâγ âδ × ∑ ν 〈µ| Â1 |ν〉 〈α⊗ ν| B̂2 |γ ⊗ δ〉 − ∑ α,β,ν,δ â†αâ † β âν âδ × ∑ µ 〈α⊗ β| B̂2 |µ⊗ δ〉 〈µ| Â1 |ν〉 − ∑ α,β,γ,ν â†αâ † β âγ âν × ∑ µ 〈α⊗ β| B̂2 |γ ⊗ µ〉 〈µ| Â1 |ν〉 〈〈renaming summation indices〉〉 = ∑ α,β,γ,δ â†αâ † β âγ âδ × Cα,β,γ,δ , (S.18) where Cα,β,γ,δ = ∑ λ 〈α| Â1 |λ〉 〈λ⊗ β| B̂2 |γ ⊗ δ〉 + ∑ λ 〈β| Â1 |λ〉 〈α⊗ λ| B̂2 |γ ⊗ δ〉 − ∑ λ 〈α⊗ β| B̂2 |λ⊗ δ〉 〈λ| Â1 |γ〉 − ∑ λ 〈α⊗ β| B̂2 |γ ⊗ λ〉 〈λ| Â1 |δ〉 = 〈α⊗ β| ( Â1(1 st)B̂2 + Â1(2 nd)B̂2 − B̂2Â1(1 st) − B̂2Â1(2nd) ) |γ ⊗ δ〉 = 〈α⊗ β| [( Â1(2 nd) + Â1(2 nd) ) , B̂2 ] |γ ⊗ δ〉 ≡ 〈α⊗ β| Ĉ2 |γ ⊗ δ〉 . (S.19) Consequently, [Â, B̂] = Ĉ. Q.E .D. 5 Problem 2(a): Use product-of-exponentials formula ∀Â, B̂ : eÂeB̂ = exp ( Â+ B̂ + 12 [Â, B̂] + 1 12 [(Â− B̂), [Â, B̂]] + · · · ) . (S.20) In particular, for  = ξâ†, B̂ = ξ∗â and [Â, B̂] = ξξ∗ being a c-number, eξâ † e−ξ ∗â = exp ( ξ↠− ξ∗â + 12ξξ ∗ ) , exactly, (S.21) and therefore |ξ〉 def= eξâ†−ξ∗â |0〉 = e−|ξ|2/2eξâ†e−ξ∗â |0〉 = e−|ξ|2/2eξ↠|0〉 . (S.22) (Note e−ξ ∗â |0〉 = |0〉 since â |0〉 = 0.) Next, [â, â†] = 1 implies that for any function f(â†), [â, f(â†)] = f ′(â†). In particular, [â, eξâ † ] = ξeξâ † or in other words, (â − ξ)eξ↠= eξ↠â and hence (â − ξ) |ξ〉 ∝ eξ↠â |0〉 = 0. Q.E .D. Problem 2(b): For any normal-ordered product of creation and annihilation operators — i.e., a product in which all creation operators are to the right of all annihilation operators — one has 〈ξ| (â†)k(â)` |ξ〉 = (ξ∗)kξ`, simply because â |ξ〉 = ξ |ξ〉 and 〈ξ| ↠= ξ∗ 〈ξ|. In particular, 〈ξ| (n̂ = â†â) |ξ〉 = ξ∗ξ. On the other hand, n̂2 = â†ââ†â = â†â†ââ + â†â =⇒ 〈ξ| n̂2 |ξ〉 = (ξ∗)2ξ2 + ξ∗ξ = n̄2 + n̄ (S.23) hence ∆n = √ 〈n̂2〉 − n̄2 = √ n̄. In a similar manner, q̂ = √ h̄ 2mω (â + â†), q̂2 = h̄ 2mω ( (â)2 + (â†)2 + 2â†â + 1 ) =⇒ 6 〈ξ| q̂2 |ξ〉 = h̄ 2mω ( (ξ + ξ∗)2 + 1 ) = 〈ξ| q̂ |ξ〉2 + h̄ 2mω and likewise 〈ξ| p̂2 |ξ〉 = mωh̄ 2 ( (−iξ + iξ∗)2 + 1 ) = 〈ξ| p̂ |ξ〉2 + mωh̄ 2 , thus ∆q = √ h̄ 2mω , ∆p = √ mωh̄ 2 , ∆q∆p = h̄ 2 . (S.24) Q.E .D. Problem 2(c): In the Schrödinger picture, ↠is time independent, hence (d/dt)eξâ † = (dξ/dt)â†eξâ † . Using time independence of the magnitude |ξ|, we then have d dt ( |ξ〉 = e−|ξ|2/2eξ↠|0〉 ) = dξ dt ↠|ξ〉 = 1 ξ dξ dt â†â |ξ〉 = −iωâ†â |ξ〉 (S.25) where the last equality comes from ξ(t) = ξ0e −iωt. In other words, ih̄ d dt |ξ(t)〉 = h̄ωâ†â |ξ(t)〉 ≡ Ĥ |ξ(t)〉 . (S.26) Q.E .D. Problem 2(d): In question 2(a) we saw that [â, â†] = 1 implies eξâ † â = (â− ξ)eξ↠for any c-number ξ. Iterating this identity gives us eξâ † f(â) = f(â − ξ)eξ↠for any function f(â) of the annihilation operator, and in particular eξâ † eη ∗â = eη ∗(â−ξ) eξâ † = e−η ∗ξ eη ∗â eξâ † . (S.27) Consequently, the quantum overlap of the coherent states |ξ〉 and 〈η| is 〈η|xi〉 = e−|η|2/2e−|ξ|2/2 〈0| eη∗âeξ↠|0〉 = e−|η| 2/2e−|ξ| 2/2e−η ∗ξ 〈0| eξâ†eη∗â |0〉 = exp ( −12 |η| 2 − 12 |ξ| 2 − η∗ξ ) (S.28) 7
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved