Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Geometrical Optics-Classical Physics-Handouts, Lecture notes of Classical Physics

This course includes alternating current, collisions, electric potential energy, electromagnetic induction and waves, momentum, electrostatics, gravity, kinematic, light, oscillation and wave motion. Physics of fluids, sun, materials, sound, thermal, atom are also included. This lecture includes: Geometrical, Optics, Waves, Light, Reflected, Object, Image, Incident, Ray, Normal, Direction, Surface, COncave, Convex

Typology: Lecture notes

2011/2012

Uploaded on 08/12/2012

lalitchndra
lalitchndra 🇮🇳

4.5

(12)

156 documents

1 / 5

Toggle sidebar

Related documents


Partial preview of the text

Download Geometrical Optics-Classical Physics-Handouts and more Lecture notes Classical Physics in PDF only on Docsity! PHYSICS –PHY101 VU © Copyright Virtual University of Pakistan 110 Sun Moon Earth SUN Summary of Lecture 35 – GEOMETRICAL OPTICS 1. In the previous lecture we learned that light is waves, and that waves spread out from every point. But in many circumstances we can ignore the spreading (diffraction and interference), and light can then be assumed to travel along straight lines as rays. This is hown by the existence of sharp shadows, as for case of the eclipse illustrated here. 2. When light falls on a flat surface, the angle of incidence equals the angle of reflection. You can verify this by using a torch and a mirror, or just by sticking pins on a piece of paper in front of a mirror. But what if the surface is not perfectly flat? In that case, as shown in fig. (b), the angle of incidence and reflection are equal at every point, but the normal direction differs from point to point. This is called "diffuse reflection". Polishing a surface reduces the diffusiveness. 3. If you look at an object in the mirror, you will see its image. It is not the real thing, and that is why it is called a "virtual" image. You can see how the virtual image of a candle is formed in this diagram. At each point on the surface, there is an incident and reflected ray. If we extend each reflected ray backwards, it appears as if they are all coming from the same point. This point is the image of the tip of the flame. If we take other points on the candle, we will get their images in just the same way. This way we will have the image of the whole candle. The candle and its image are at equal distance from the mirror. docsity.com PHYSICS –PHY101 VU © Copyright Virtual University of Pakistan 111 4. Here is another example of image formation. A source of light is placed in front of a bi-convex lens which bends the light as shown. The eye receives rays of light which seem to originate from a positon that is further away than the actual source. Now just to make the point even more forcefully, in all three situations below, the virtual image is in the same position although the actual object is in 3 different places. 5. Imagine that you have a sphere of radius R and that you can cut out any piece you want. The outside or inside surface can be silvered, as you want. You can make spherical mirrors in this way. These can be of two kinds. In the first case, the silvering can be on the inside surface of the sphere, in which case this is is called a convex spherical mirror. The normal directed from the shiny surface to the centre of the sphere (from which it was cut out from) is called the principal axis, and the radius of curvature is . The other situation is that in which the ou R tside surface is shiny. Again, the principal axis the same, but now the radius of curvature (by definition) is - . What does a negative curvature mean? It means precisely what has been illus R trated - a convex surface has a positive and a concave surface has a negative curvature. docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved