Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Homework 6 Problems Solutions - Quantum Mechanics I | PHYS 5250, Assignments of Quantum Mechanics

Material Type: Assignment; Professor: Radzihovsky; Class: Introduction to Quantum Mechanics 1; Subject: Physics; University: University of Colorado - Boulder; Term: Unknown 1989;

Typology: Assignments

Pre 2010

Uploaded on 02/10/2009

koofers-user-auv
koofers-user-auv 🇺🇸

10 documents

1 / 13

Toggle sidebar

Related documents


Partial preview of the text

Download Homework 6 Problems Solutions - Quantum Mechanics I | PHYS 5250 and more Assignments Quantum Mechanics in PDF only on Docsity! Quantum Mechanics - 1: HW 6 Solutions Leo Radzihovsky Paul Martens November 12, 2007 1 Problem 1 Show that H ( ~E1 · ~E2 ) commutes with ~L, where ~E1,2 are vector operators. The definition of a vector operator.[ E (1 or 2) i , Lj ] = ı~ijkEk (1) (transforms like a vector under rotations)[ E (1) i E (2) i , Lj ] = E(1)i [ E (2) i , Lj ] + [ E (1) i , Lj ] E (2) i (2) = ı~ijk ( E (1) i E (2) k + E (1) k E (2) i ) (3) = 0 (4) Because ~E1 · ~E2 commute with ~L all functions of ~E1 · ~E2 commute with ~L[ H ( ~E1 · ~E2 ) , ~L ] = 0 (5) 2 Problem 2 Show that Lz = −ı~ (x∂y − y∂x) = −ı~∂φ relating coordinates x = r sin θ cosφ (6) y = r sin θ sinφ (7) z = r cos θ (8) and derivatives ∂y = ∂r ∂y ∂r + ∂θ ∂y ∂θ + ∂φ ∂y ∂φ (9) ∂x = ∂r ∂x ∂r + ∂θ ∂x ∂θ + ∂φ ∂x ∂φ (10) 1 r = √ x2 + y2 + z2 (11) z r = cos θ (12) calculating derivatives ∂r ∂x = x r = sin θ cosφ (13) ∂r ∂y = y r = sin θ sinφ (14) θ derivatives can be taken easily by making use of the chain rule and equation (12) ∂ ∂x z r = − z r2 ∂r ∂x = − sin θ ∂θ ∂x = − sin θ ∂θ ∂x (15) solving for ∂θ∂x . ∂θ ∂x = 1 r cos θ cosφ (16) the calculation for ∂θ∂y is almost identical ∂θ ∂y = 1 r cos θ sinφ (17) finding φ derivatives y x = tanφ (18) taking derivatives of both sides − tanφ x = sec2 φ ∂φ ∂x (19) solving for ∂φ∂x . ∂φ ∂x = − sinφ r sin θ (20) a similar argument can be used for y ∂φ ∂y = cosφ r sin θ (21) Putting all of it together Lz −ı~ = x∂y − y∂x = r sin θ cosφ (∂yr∂r + ∂yθ∂θ + ∂yφ∂φ) −r sin θ sinφ (∂xr∂r + ∂xθ∂θ + ∂xφ∂φ) (22) Lz = −ı~∂φ (23) 2 5.2 b: ψ (x, y, z) = A (xy + yz + xz) e− r r0 (46) use the result from problem 4: xy = −ı 4 √ 32π 15 ( Y 22 − Y −22 ) r2 (47) yz = ı 2 √ 8π 15 ( Y 12 + Y −1 2 ) r2 (48) xz = −1 2 √ 8π 15 ( Y 12 − Y −12 ) r2 (49) (50) therefore ψ (x, y, z) = −A 2 e− r r0 √ 8π 15 [ ıY 22 + (1− ı)Y 12 − (1 + ı)Y −12 − ıY −2 2 ] r2 (51) via orthogonality of the Y m` ’s C2,2 = Nı ⇒ P2,2 = N2 = 1 6 (52) C2,1 = N (1− ı) ⇒ P2,1 = 2N2 = 1 3 (53) P2,0 = 0 (54) C2,−1 = N (1 + ı) ⇒ P2−1 = 2N2 = 1 3 (55) C2,−2 = −ıN ⇒ P2,−2 = N2 = 1 6 (56) all other coefficients are 0. 6 Problem 6 Rotation of ` = 1 (vector) eigenstates. θxx̂ rotation: x→ x (57) y → y cos θx − z sin θx (58) z → z cos θx + y sin θx (59) (60) ψ (x, y, z) → ψ (x, y cos θx − z sin θx, z cos θx + y sin θx) (61) check on ψ = Aze− r2 a2 → A (z cos θx − y sin θx) e− r2 a2 by working in Y m` repre- sentation. ψ = Ae −r2 a2 z = A √ 4π 3 re− r2 a2 Y 01 (62) 5 first we write this as a vector ψ = 01 0  (63) then we rotate using the rotation matrix e−ıθxLx/~ = (cos θx − 1) ( Lx ~ )2 − ı sin θx ( Lx ~ ) + I (64) because L3x = Lx. In matrix form e−ıθxLx/~ = (cos θx − 1)  0 1√ 2 0 1√ 2 0 1√ 2 0 1√ 2 0  2 − ı sin θx  0 1√ 2 0 1√ 2 0 1√ 2 0 1√ 2 0  (65) As a check you should convince yourself that x→ x here. eıθxLx/~ 01 0  = 01 0 − ı sin θx  1√20 1√ 2 + (cos θx − 1) 01 0  (66) = cos θxY 01 − ı sin θx 1√ 2 ( Y 11 + Y − 1 1 ) (67) = 1 r √ 3 4π (cos θxz − sin θxy) (68) therefore ψ → A √ 4π 3 re− r2 a2 1 r √ 3 4π (cos θxz − sin θxy) = A (cos θxz − sin θxy) e− r2 a2 (69) 7 Problem 7 Harmonic Oscillator 7.1 a: 2D in polar H = p2 2µ + 1 2 µω2ρ2 (70) 7.1.1 i: [H,Lz] One can just use answer to problem 1. WE do it here explicitly.[ p2x + p 2 y, xpy − ypx ] = [ p2x, x ] py + [ p2y, x ] py − [ p2x, y ] px − [ p2y, y ] px (71) = 2px [px, x] py − 2py [py, y] px (72) = −2ı~ (pxpy − pypx) = 0 (73) 6 therefore [H,Lz] = 0 (74) So eigenfunctions of H are eigenfunctions of Lz. Keep this in mind as we look at the HO Hamiltonian. Hψ = Eψ (75)[ − ~ 2 2µ ∇2 + V (ρ) ] ψ = Eψ (76)[ − ~ 2 2µ ( ∂2 ∂ρ2 + 1 ρ ∂ ∂ρ + 1 ρ2 ∂2 ∂φ2 ) + V (ρ) ] R (ρ) Φ (φ) = ER (ρ) Φ (φ) (77) We extract the angular dependence by taking Φ = Φm, where LzΦm = ~mΦm, with m integers. H in terms of Lz. Note that Φm = eımφ, forms a complete set.[ − ~ 2 2µ ( ∂2ρ + 1 ρ ∂ρ ) + L2z 2µρ2 + V (ρ) ] R (ρ) Φm (φ) = ER (ρ) Φm (φ) (78)[ − ~ 2 2µ ( ∂2ρ + 1 ρ ∂ρ ) + ( 1 2 µω2ρ2 + ~2m2 2µρ2 )] R (ρ) = ER (ρ) (79) 7.1.2 ii: ρ→ 0 limit In the ρ → 0 the effective potential is dominated by a centrifugal barrier, due to angular momentum conservation. (Veff → m 2 ρ2 ) − ~ 2 2µ ( ∂2ρ + 1 ρ ∂ρ − m2 ρ2 ) Rm (ρ) = ERE,m (ρ) ≈ 0 (80) suppose Rm (ρ) = ρα (81) we get a relation for α using eqn (80). α (α− 1) + α−m2 = 0 ⇒ α = ±m (82) We expect our wavefunction to be well behaved at ρ = 0, so we’ll take α = |m|. lim ρ→0 RE,m = Cρ|m| (83) 7.1.3 iii: ρ→∞ limit In this limit we drop the m 2 ρ2 , E, and 1 ρ∂ρ terms.( − ~ 2 2µ ∂2ρ + 1 2 µω2ρ2 ) Rm (ρ) = 0 (84) solution to this is e − ρ 2 2ρ20 , where ρ0 = √ ~ µω (85) 7 m is even/odd when n is even/odd |m| = { n, n− 2, n− 4, · · · , 0 n ∈ even n, n− 2, n− 4, · · · , 1 n ∈ odd (104) This means the degeneracy of En is n + 1. This agrees with our treatment in Cartesian coordinates. e = ~ω nx + ny︸ ︷︷ ︸ n +1  (105) 7.1.9 ix: Eigenfunctions n = 0 ⇒ m = 0, D0 = 1 φ0,0 (ρ, φ) = N0,0e− ρ2 2ρ (106) n = 1 ⇒ m ∈ {1, 0,−1}, D1 = 2 u1 = c0 + c2x2, c2 = 0 (107) φ1,±1 (ρ, φ) = N1,±1e − ρ 2 2ρ0 ( ρ ρ0 ) e±ıφ (108) n = 2 ⇒ m ∈ {2, 0,−2}, D2 = 3 u2,2 (x) = c (2) 0 + c (2) 2 x 2 (109) c (2) 2 = 2 (−3 + 2 + 1 + 0) c (2) 0 = 0 (110) u2,0 (x) = c (0) 0 + c (0) 2 x 2 (111) c (0) 2 = 2 −3 + 1 + 0 2 ∗ 2 c (0) 0 = −c (0) 0 (112) φ2,±2 (ρ, φ) = N2,±2e − ρ2ρ0 ( ρ ρ0 )2 e±2ıφ (113) φ2,0 (ρφ) = N2,0e − ρ 2 2ρ0 ( 1− ρ 2 ρ20 ) (114) 7.1.10 x: relating Cartesian and polar coordinate solutions n = 0 state is non-degenerate so it must match the Cartesian form exactly φ0,0 ∝ e− ρ 2ρ0 = e− x2 2ρ0 e− y2 2ρ0 (115) 10 n = 1 states are two-fold degenerate so the a Cartesian state must just be some linear combination of the old states φ1,±1 ∝ ρe − ρ 2 2ρ20 e±ıφ (116) ∝ (x± ıy) e − ρ 2 2ρ20 (117) ∝ ( H1 (x) e−x 2 2ρ0 )( H0 (y) e − y 2 2ρ0 ) ± ı ( H0 (x) e − x2 2ρ20 )( H1 (y) e − y 2 2ρ20 ) (118) φ2,±2 ∝ ρ2 cos 2φ︸ ︷︷ ︸ x2−y2 ±ı ρ2 sin 2φ︸ ︷︷ ︸ 2xy  e− ρ22ρ20 (119) ∝ H2 (x) e − x2 2ρ20H0 (y) e − y 2 2ρ20 −H0 (x) e − x2 2ρ20H2 (y) e − y 2 2ρ20 ±ı2H1 (x) e − x2 2ρ20H1 (y) e − y 2 2ρ20 (120) φ2,0 ∝ ( 1− x 2 + y2 ρ20 ) e − ρ 2 2ρ20 (121) ∝ H2 (x) e − x2 2ρ20H0 (y) e − y 2 2ρ20 +H0 (x) e − x2 ρ20 H2 (y) e − y 2 2ρ20 (122) Parity from before was (−1)n. Eince odd/even m corresponds to odd/even n, parity in the polar representation is (−1)m. 7.2 b: Rotating system If we rotate the system with frequency Ω, then H → HΩ = p2 2µ + 1 2 µω2ρ2 − ΩLz (123) En,m = ~ω (n+ 1)− ~Ωm (124) For small Ω < ω, we get a small splitting of previously degenerate energy levels. For Ω ≥ ω, the system becomes unstable as a result of centrifugal kinetic energy dominating the potential. Veff = 1 2 mω2r2 − 1 2 mΩ2r2 (125) 11 7.3 c: 3D Oscillator H = p2 2µ + 1 2 µω2r2 (126) The eigenfunctions have the form φE,`,m = UE,` r Y m` (127) En = ~ω ( n+ 3 2 ) (128) These states are degenerate. Each n, ` has 2` + 1 m-states. For a given n the allowed values of ` are given by ` = n− 2k, where k ∈ Z (129) 7.3.1 i: degeneracy Dn = n/2∑ k=0 n∑ `=0 ∑̀ m=−`︸ ︷︷ ︸ 2`+1 δ`,n−2k (130) = n/2∑ k=0 [2 (n− 2k) + 2] (131) = n/2∑ k=0 (2n+ 1)− 4 n/2∑ k=0 k (132) = (2n+ 1) (n 2 + 1 ) − n (n 2 + 1 ) = (n+ 1) (n 2 + 1 ) (133) Dn = (n+ 1) (n+ 2) 2 (134) 7.3.2 ii: eigenfunctions ψ0,0,0 (r, θ, φ) = N0,0e − r2 2r20 = e − x2 2r20 e − y 2 2r20 e − z2 2r20 (135) 12
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved