Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions to Problem Set #3 in Quantum Mechanics and Quantum Field Theory, Assignments of Physics

Solutions to problem set #3 in a quantum mechanics and quantum field theory course. The solutions cover various topics such as the product-of-exponentials formula, coherent states, and the classical equation of motion for complex fields. The document also discusses the canonical commutation relations and their fourier transforms, as well as the identification of the current as the electric current.

Typology: Assignments

Pre 2010

Uploaded on 08/30/2009

koofers-user-8ln
koofers-user-8ln 🇺🇸

10 documents

1 / 9

Toggle sidebar

Related documents


Partial preview of the text

Download Solutions to Problem Set #3 in Quantum Mechanics and Quantum Field Theory and more Assignments Physics in PDF only on Docsity! PHY–396 K. Solutions for problem set #3. Problem 1(a): Use product-of-exponentials formula ∀Â, B̂ : eÂeB̂ = exp ( Â+ B̂ + 12 [Â, B̂] + 1 12 [(Â− B̂), [Â, B̂]] + · · · ) . (S.1) In particular, eαâ † e−α ∗â = exp ( α↠− α∗â + 12αα ∗ + 0 ) , hence |α〉 def= eαâ †−α∗â |0〉 = e−|α| 2/2eαâ † e−α ∗â |0〉 = e−|α| 2/2eαâ † |0〉 . (S.2) (Note e−α ∗â |0〉 = |0〉 since â |0〉 = 0.) Next, [â, â†] = 1 implies that for any function f(â†), [â, f(â†)] = f ′(â†). In particular, [â, eαâ † ] = αeαâ † or in other words, (â−α)eα↠= eα↠â and hence (â−α) |α〉 ∝ eα↠â |0〉 = 0. Q.E .D. Problem 1(b): For any normal-ordered product of creation and annihilation operators — i.e., a product in which all creation operators are to the right of all annihilation operators — one has 〈α| (â†)k(â)` |α〉 = (α∗)kα`, simply because â |α〉 = α |α〉 and 〈α| ↠= α∗ 〈α|. In particu- lar, 〈α| (n̂ = â†â) |α〉 = α∗α. On the other hand, n̂2 = â†ââ†â = â†â†ââ + â†â =⇒ 〈α| n̂2 |α〉 = (α∗)2α2 + α∗α = n̄2 + n̄ (S.3) hence ∆n = √ 〈n̂2〉 − n̄2 = √ n̄. In a similar manner, q̂ = √ h̄ 2mω (â + â†), q̂2 = h̄ 2mω ( (â)2 + (â†)2 + 2â†â + 1 ) =⇒ 1 〈α| q̂2 |α〉 = h̄ 2mω ( (α + α∗)2 + 1 ) = 〈α| q̂ |α〉2 + h̄ 2mω and likewise 〈α| p̂2 |α〉 = mωh̄ 2 ( (−iα + iα∗)2 + 1 ) = 〈α| p̂ |α〉2 + mωh̄ 2 , thus ∆q = √ h̄ 2mω , ∆p = √ mωh̄ 2 , ∆q∆p = h̄ 2 . (S.4) Q.E .D. Problem 1(c): In the Schrödinger picture, ↠is time independent, hence (d/dt)eαâ † = (dα/dt)â†eαâ † . Using time independence of the magnitude |α|, we then have d dt ( |α〉 = e−|α| 2/2eαâ † |0〉 ) = dα dt ↠|α〉 = 1 α dα dt â†â |α〉 . (S.5) Specifically, for α = α0e −iωt, (d/dt) |α〉 = −iωâ†âα and consequently, for the state vector (2), ih̄ d dt |ψ〉 = h̄ωâ†â |ψ〉 + 12 h̄ωψ = Ĥ |ψ〉 . (S.6) Q.E .D. Problem 1(d): First, quantum overlap with the ground state, 〈0|α〉 = e−|α|2/2 〈0| eα↠|0〉 = e−|α|2/2 because 〈0| eα↠= 〈0| (note 〈0| ↠= 0). Now, for two different coherent states, 〈α|beta〉 = e−|α| 2/2 〈0| eα ∗â |β〉 = e−|α| 2/2 〈0| eα ∗β |β〉 = e−|α| 2/2 eα ∗β e−|β| 2/2 or in terms of the probability overlap, |〈α|β〉|2 = e−|α−β| 2 . (S.7) 2 Problem 2(a): Classical equation of motion for a complex field follow from zero variational derivative of the action with respect to both real and imaginary parts if δΦ(x). Equivalently, we treat Φ(x) and Φ∗(x) as independent, thus ∂L ∂(∂µΦ) = ∂µΦ∗, ∂L ∂(∂µΦ∗) = ∂µΦ, ∂L ∂(Φ) = −m2Φ∗−λ2 (Φ ∗)2Φ, ∂L ∂(Φ∗) = −m2Φ−λ2 Φ ∗Φ2, and the Euler–Lagrange field equations ∂2Φ∗ +m2Φ∗ + λ2 (Φ ∗)2Φ = 0, ∂2Φ +m2Φ + λ2 Φ ∗Φ2 = 0. (S.16) Consequently, the divergence of the current (7) evaluates to ∂µJ µ = i∂µ ( Φ∗(∂µΦ)− (∂µΦ∗)Φ ) = iΦ∗(∂2Φ) − i(∂2Φ∗)Φ = −iΦ∗(m2Φ + λ2 Φ ∗Φ2) + i(m2Φ∗ + λ2 (Φ ∗)2Φ)Φ = 0. (S.17) Q.E .D. Problem 2(b): In the Hamiltonian formalism for the classical fields Φ(x) and Φ∗(x), the canonical conjugate fields are Π(x) = ∂L ∂(∂0Φ) = ∂0Φ ∗(x) and Π∗(x) = ∂L ∂(∂0Φ∗) = ∂0Φ(x). (S.18) The canonical conjugation implies canonical Poisson brackets between the classical fields Φ, Φ∗, Π and Π∗ and hence the canonical commutation relation between their quantum counter- parts: [Φ̂(x), Φ̂(x′)] = [Φ̂(x), Φ̂†(x′)] = [Φ̂†(x), Φ̂†(x′)] = 0, [Π̂(x), Π̂(x′)] = [Π̂(x), Π̂†(x′)] = [Π̂†(x), Π̂†(x′)] = 0, [Φ̂(x), Π̂†(x′)] = [Φ̂†(x), Π̂(x′)] = 0, (S.19) 5 [Φ̂(x), Π̂(x′)] = [Φ̂†(x), Π̂†(x′)] = iδ(3)(x− x′). (In the Heisenberg picture for the quantum fields, these commutation relations hold for equal times t = t′ only.) Classically, the Hamiltonian density is H = Π∂0Φ + Π∗∂0Φ∗ − L = Π∗Π + ∇Φ∗ · ∇Φ + m2 Φ∗Φ + 14λ ( Φ∗Φ )2 , (S.20) so the quantum theory’s Hamiltonian is obviously (8) (modulo operator-ordering ambiguity). Q.E .D. Problem 2(c): Fourier transforming the canonical commutation relations (S.19) results in [Φ̂p, Φ̂p′ ] = [Φ̂p, Φ̂ † p′ ] = [Φ̂ † p, Φ̂ † p′ ] = 0, [Π̂p, Π̂p′ ] = [Π̂p, Π̂ † p′ ] = [Π̂ † p, Π̂ † p′ ] = 0, [Φ̂p, Π̂ † p′ ] = [Φ̂ † p, Π̂p′ ] = 0, (S.21) [Φ̂p, Π̂p′ ] = [Φ̂ † p, Π̂ † p′ ] = (2π) 3iδ(3)(p + p′). Consequenly, [âp, âp′ ] = [âp, b̂ † p′ ] = [b̂ † p, b̂ † p′ ] = 0 (S.22) because all Φp and all Π † p commute with each other. Similarly, [b̂p, b̂p′ ] = [b̂p, â † p′ ] = [â † p, â † p′ ] = 0 (S.23) because all Φ†p and all Πp commute with each other too. Less obviously [âp, b̂p′ ] = i 2 √ Ep Ep′ (2π)3iδ(3)(p + p′) + i2 √ Ep′ Ep (2π)3(−i)δ(3)(−p− p′) = 0 (S.24) 6 and likewise [â†p, b̂ † p′ ] = 0. Finally, [âp, â † p′ ] = [b̂p, b̂ † p′ ] = −i 2 √ Ep Ep′ (2π)3iδ(3)(p− p′) + i2 √ Ep′ Ep (2π)3(−i)δ(3)(p′ − p) = (2π)3δ(3)(p− p′). (S.25) Q.E .D. Problem 2(d): First, Fourier-transforming the free Hamiltonian gives us Ĥfree = ∫ d3p (2π)3 ( Π̂†pΠ̂p + E 2 p Φ̂ † pΦ̂p ) . (S.26) Second, we reverse the definitions (9) to obtain Φ̂p = âp + b̂ † −p√ 2Ep and Π̂p = √ 1 2Ep ( −ib̂p + iâ † −p ) . (S.27) Third, we calculate E2p Φ̂ † pΦ̂p + Π̂−pΠ̂ † −p = 1 2Ep ( â†p + b̂−p ) ( âp + b̂ † −p ) + 12Ep ( iâ†p − ib̂−p ) ( −iâp + ib̂ † −p ) = Ep ( â†pâp + b̂−pb̂ † −p ) . (S.28) Finally, we put eqs. (S.28) and (S.26) together and derive Ĥfree = ∫ d3p (2π)3 ( E2p Φ̂ † pΦ̂p + Π̂−pΠ̂ † −p ) = ∫ d3p (2π)3 Ep ( â†pâp + b̂−pb̂ † −p ) = ∫ d3p (2π)3 Ep ( â†pâp + b̂ † pb̂p ) + const. (S.29) Q.E .D. 7
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved