Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Impedance - Engineering Electrical Circuits - Lecture Slides, Slides of Electrical Circuit Analysis

Some concept of Engineering Electrical Circuits are Active Filters, Useful Electronic, Boolean, Logic Systems, Circuit Simulation, Circuit-Elements, Common-Source, Understand, Dual-Source, Effect Transistors. Main points of this lecture are: Impedance, Resistors, Inductors, Capacitors, No Phase Shift, Lags, Leads, Voltage Phasor, Current Phasor, Previous Sld

Typology: Slides

2012/2013

Uploaded on 04/30/2013

devguru
devguru 🇮🇳

4.3

(12)

68 documents

1 / 44

Toggle sidebar

Related documents


Partial preview of the text

Download Impedance - Engineering Electrical Circuits - Lecture Slides and more Slides Electrical Circuit Analysis in PDF only on Docsity! Impedance KCL & KVL Docsity.com Review → V-I in Phasor Space • Resistors  Inductors  Capacitors R VI = °−∠= 90 Lω VI °∠= 90VI Cω No Phase Shift i(t) LAGS i(t) LEADS Docsity.com Impedance cont.2 • Thus  The Magnitude and Phase jXRZ z +=∠θ R X XRZ z 1 22 tan−= += θ  Where z z ZX ZR θ θ sin cos = = Cj Z LjZ Cj Lj C L RZRR ω ω ω ω 11 = = = = == IV IV IV ImpedanceEq. PhasorElement  Summary Of Passive- Element Impedance  Examine ZC C j Cjj j Cj ZC ωωω 1 1 − === C X C jZ CC ωω 11 − =⇒ − =∴ Docsity.com KVL & KCL Hold In Phasor Spc − + )(1 tv − + )(3 tv −+ )(2 tv )(0 ti )(1 ti )(2 ti )(3 ti 0)()()( 321 =++ tvtvtv :KVL 3,2,1,0,)( 0)()()()( )( 3210 == =+++− + keIti titititi ktj Mkk φω :KCL 3,2,1,)( )( == + ieVtv itjMii θω 0)( :KVL 321 321 =++ tjj M j M j M eeVeVeV ωθθθ 0332211 =∠+∠+∠ θθθ MMM VVV Phasors! 0321 =++ VVV − + 1V − + 3V −+ 2V 0I 1I 2I 3I 03210 =+++− IIII Similarly for the Sinusoidal Currents ... Docsity.com Series & Parallel Impedances • Impedances (which have units of Ω) Combine as do RESISTANCES – The SERIES Case • The Parallel Case I −+ 1V 1Z −+ 2V 2Z I 21 ZZZs += ∑= k ks ZZ 1Z 2Z − + V I I − + V 21 21 ZZ ZZZ p + = ∑= k kp ZZ 11 Docsity.com Complex Numbers in MATLAB • MATLAB recognizes complex numbers these in these forms – Rectangular – Exponential • Can Use “i” or “j” for √(- 1) • MATLAB Always returns “i” for √(-1) • Sometimes need “*” >> phiR = 23*pi/180 % 23deg in Rads phiR = 0.4014 >> Z1 = 7 + i*23 % if i or j BEFORE, then need * Z1 = 7.0000 +23.0000i >> Z2 = 11 - 13j Z2 = 11.0000 -13.0000i >> Z3 = 43*exp(j*phiR) % Need * Z3 = 39.5817 +16.8014i >> Z4 = 37*exp(0.61j) Z4 = 30.3270 +21.1961i Docsity.com Phasors in MATLAB • MATLAB Does NOT Recognize Phasor NOTATION – But it DOES handle Complex Exponentials • e.g.:   1753 4329 8 7 ∠−= −∠= Z Z >> phi7 = -43*pi/180 phi7 = -0.7505 >> phi8 = 17*pi/180 phi8 = 0.2967 >> Z7 = 29*exp(j*phi7) Z7 = 21.2093 -19.7780i >> Z8 = -53*exp(j*phi8) Z8 = -50.6842 -15.4957i >> Zsum = Z7 + Z8 Zsum = -29.4749 -35.2737i >> Zdif = Z7 - Z8 Zdif = 71.8934 - 4.2823i >> Zprod = Z7*Z8 Zprod = -1.3814e+003 +6.7378e+002i >> Zquo = Z7/Z8 Zquo = -0.2736 + 0.4739i Docsity.com Phasors in MATLAB • MATLAB Always returns Complex No.s in RECTANGULAR Form • Can Recover Magnitude & Phase Using Commands – abs(Z) – angle(Z) >> Zquo = Z7/Z8 Zquo = -0.2736 + 0.4739i >> Asum = abs(Zsum) Asum = 45.9674 >> phi_sum = angle(Zsum) phi_sum = -2.2669 >> phi_sumd = phi_sum*180/pi phi_sumd = -129.8824 >> Aquo = abs(Zquo) Aquo = 0.5472 >> phi_quo = angle(Zquo) phi_quo = 2.0944 >> phi_quod = phi_quo*180/pi phi_quod = 120.0000 >> Zquo_test = Aquo*exp(j*phi_quo) Zquo_test = -0.2736 + 0.4739i Docsity.com Phasor Diagrams • As Noted Earlier Phasors can be Considered as VECTORS in the Complex Plane – See Diagram at Right  See Next Slide for Review of Vector Addition • Text Diagrams follow the PARALLELOGRAM Method  Phasors Obey the Rules of Vector Arithmetic • Which were orignially Developed for Force Mechanics φ A b a Real Imaginary Docsity.com Vector Addition • Parallelogram Rule For Vector Addition • Examine Top & Bottom of The Parallelogram – Triangle Rule For Vector Addition – Vector Addition is Commutative – Vector Subtraction → Reverse Direction of The Subtrahend B B C C ( )QPQP −+=− PQQP +=+ Docsity.com Example  Phasor Diagram • For The Ckt at Right, Draw the Phasor Diagrams as a function of Frequency • First Write KCL  That is, we Can Select ONE Phasor to have a ZERO Phase Angle • In this Case Choose V  Next Examine Frequency Sensitivity of the Admittances  Now we can Select ANY Phasor Quantity, I or V, as the BaseLine ∑ ⇒=       ++= ++= k kS S S Y Cj LjR Cj LjR sAdmittance 11 VI VI VVVI ω ω ω ω Docsity.com KCL & KVL for AC Analysis • Simple-Circuit Analysis – AC Version of Ohm’s Law → V = IZ – Rules for Combining Z and/or Y – KCL & KVL – Current and/or Voltage Dividers • More Complex Circuits – Nodal Analysis – Loop or Mesh Analysis – SuperPosition Docsity.com Methods of AC Analysis cont. • More Complex Circuits – Thevenin’s Theorem – Norton’s Theorem – Numerical Techniques • MATLAB • SPICE Docsity.com Example • For The Ckt At Right, Find VS if  Then I2 by Ohm  Solution Plan: GND at Bot, then Find in Order • I3 → V1 → I2 → I1 → VS  I3 First by Ohm °∠= 458VoV ( ) ( )AVO °∠= Ω = 454 23 VI  Then V1 by Ohm ( ) °∠×°−∠=−= 454458)22( 31 IV j )(0314.111 V°∠=V )(90657.5 902 0314.11 2 1 2 A V j °−∠= °∠Ω °∠ = Ω = VI  Then I1 by KCL °∠+°−∠=+= 45490657.5321 III ))(828.2828.2(657.51 Ajj ++−=I )(829.2828.21 Aj−=I Docsity.com Nodal Analysis cont. • Solving for For V2  Recall  The Complex Arithmetic ( ) Ω = 1 2 V O VI  Or 11 62 11 11 11 1 2 jjj + +=      − ++ + V 11 6)11(2 )11)(11( )11()11)(11()11( 2 j j jj jjjj + ++ = −+ ++−++−V 28 1 4 2 jj += − V ( ) ( ) 2 3 2 5 4 1 1 28 2 j jj −= −+ =∴V )( 2 3 2 5 AjO       −=I °−∠= 96.3092.2 AOI Docsity.com Loop Analysis for AC Circuits • Same Ckt, But Different Approach to Find IO • Note: IO = –I3 • Constraint: I1 = –2A∠0  Simplify Loop2 & Loop3  The Loop Eqns  Two Eqns In Two Unknowns 0))(1(06))(1( :2 LOOP 3221 =+−+°∠−++ IIjIIj 01)()1( :3 LOOP 332 =Ω++Ω− IIIj )2)(1(6)1(2 )1(6)1(2 :L2 32 132 −+−=−+ +−=−+ jIjI IjIjI 0)2()1( :L3 32 =−+− IjIj  Solution is I3 = –IO  Recall I1 = –2A∠0 Docsity.com Loop Analysis cont • Isolating I3  The Next Step is to Solve the 3 Eqns for I2 and I3  So Then Note  Then The Solution ( ) )28)(1()2(2)1( 32 jjjj +−=−−− I 4 610 3 j− =I )( 2 3 2 5 0 Aj−=⇒ I 2I  Could also use a SuperMesh to Avoid the Current Source 0)1()(1 :3 MESH 0)(106)1( :SUPERMESH 02 :CONSTRAINT 323 321 12 =−+− =−+°∠−+ °∠=− III III II j j 32 III −=O Docsity.com AC Source SuperPosition cont. • Find I-Src Contribution to IO by I-Divider  The V-Src Contribution by V-Divider  Now Deactivate the I-Source (open it) Ω=1'Z )(01 11 102'0 A°∠=+ °∠=I )1(||1" jZ −= ( ) ( )j jjZ −+ −⋅ =−= 11 11)1(||1" )(06 1" " " 1 VjZ Z °∠ ++ =V )(06 1 1 " " " 1 " A jZ Z O °∠++ =Ω= VI Docsity.com AC Source SuperPosition cont.2 • Sub for Z”  The Total Response  Finally SuperPose the Response Components )(6 1 2 1 2 1 " 0 A j j j j j ++ − − − − =I 6 3)1( 1" 0 jj j ++− − =I )( 4 6 4 6" 0 Aj−=I )( 2 3 2 5 0 Aj−=∴ I ( )       −+=+= j 2 3 2 31"0 ' 00 III Docsity.com Multiple Frequencies • When Sources of Differing FREQUENCIES excite a ckt then we MUST use SuperPosition for every set of sources with NON-EQUAL FREQUENCIES • An Example 1V 2V  We Can Denote the Sources as Phasors  1050&0100 21 −∠=∠= VV VV  But canNOT COMBINE them due to DIFFERENT frequencies Docsity.com Source Transformation • Source transformation is a good tool to reduce complexity in a circuit – WHEN IT CAN BE APPLIED • “ideal sources” are not good models for real behavior of sources – A real battery does not produce infinite current when short-circuited • Resistance → Impedance Analogy + - Improved model for voltage source Improved model for current source SV VR SI IR a b a b SS IV RIV RRR = == WHEN SEQUIVALENT AREMODELS THE VZ IZ SS IV Z ZZZ IV = == Docsity.com Source Transformation • Same Ckt, But Use Source Transformation to Find IO • Start With I-Src  Then the Reduced Circuit jV 28' +=  Next Combine the Voltage Sources And Xform j j ZSeries S S + + == 1 28'VI Docsity.com Source Transformation cont • The Reduced Ckt  Now Combine the Series-Parallel Impedances  The Reduced Ckt j j S + + = 1 28I Ω= −++ − =−+= 1 11 1)1(||)1( 2 jj jjjZ p pZ 2 35 j O − =∴ I  IO by I-Divider 2 35 j− = ( )( ) ( )( )jj jj j j SO −+ −+ = + + =⋅= 11 14 1 4 2 1II Docsity.com Docsity.com abotcollege.edu SAR IZ_ Bruce Mayer, PE Engineering Instructor haba College KVL LooP-/ -244 20 + (Zi-T2) f2+\Va =o Kee Looh-2 —~Va + (De-L)gr-2) Tr + @I2 5 CB STRAIT . 22907 T2—Lh >. L > Zr-2l7e =T2-ZhAy Loor-(| £ Looh-> (242)D-2sT2+M = 24VL0 ey Z) ¢2Te +va = © 27, + (2-2)e = eevee @ 6 2.0(L- 24g) + 20(j-3) Tn = 2¢VA0 (#- 28) Da- ay Loo =2erho Doceity com (¢-24\) a-Z£2- ZEHt+ELID Te = @Etr4V ( “-2)r Tet 2ERBDKA YET Lea /-26.s Tet 6 ¥¢¥/ ALEC, 08 Diz (4¥ + 228)A THUS Vo = 2i1°L2 (@8 + C.¥5)V Vo = £0, 88V £36.08" —_ iin WhiteBoard Work 20Ω 6mH 10Ω is(t) 3.33 µF i1(t) i2(t)  See Next Slide for Phasor Diagrams  Let’s Work this Nice Problem ( ) ( ) °∠=⇒ °+= 13.8100 13.85000cos100 mA tmAtiS I Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved