Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Introduction to 3D Elasticity - Introduction to Finite Elements - Lecture Slides, Slides of Mathematical Methods for Numerical Analysis and Optimization

The lecture slides of the Introduction to Finite Elements are very helpful and interesting the main points are:Introduction to 3d Elasticity, Elasticity Problem, Differential Equation, Boundary Conditions, Strain-Displacement Relationship, Stress-Strain Relationship, Plane Stress, Axisymmetric Body, Minimum Potential Energy

Typology: Slides

2012/2013

Uploaded on 05/07/2013

anuhya
anuhya 🇮🇳

4.2

(23)

115 documents

1 / 10

Toggle sidebar

Related documents


Partial preview of the text

Download Introduction to 3D Elasticity - Introduction to Finite Elements - Lecture Slides and more Slides Mathematical Methods for Numerical Analysis and Optimization in PDF only on Docsity! 1 Introduction to 3D Elasticity Reading assignment: Appendix C+ 6.1+ 9.1 + Lecture notes Summary: • 3D elasticity problem •Governing differential equation + boundary conditions •Strain-displacement relationship •Stress-strain relationship •Special cases 2D (plane stress, plane strain) Axisymmetric body with axisymmetric loading • Principle of minimum potential energy 1D Elasticity (axially loaded bar) x y x=0 x=L A(x) = cross section at x b(x) = body force distribution (force per unit length) E(x) = Young’s modulus u(x) = displacement of the bar at x x F 1. Strong formulation: Equilibrium equation + boundary conditions Lxb dx d  0;0  LxatF dx du EA xatu   00Boundary conditions Equilibrium equation 3. Stress-strain (constitutive) relation : ε(x) E(x)  E: Elastic (Young’s) modulus of bar 2. Strain-displacement relationship: dx du ε(x)  Docsity.com 2 Problem definition 3D Elasticity Surface (S) Volume (V) u v w V: Volume of body S: Total surface of the body The deformation at point x =[x,y,z]T is given by the 3 components of its    u x y z x displacement       w vu NOTE: u= u(x,y,z), i.e., each displacement component is a function of position 3D Elasticity: EXTERNAL FORCES ACTING ON THE BODY Two basic types of external forces act on a body 1. Body force (force per unit volume) e.g., weight, inertia, etc 2. Surface traction (force per unit surface area) e.g., friction BODY FORCE Surface (S) Volume (V) u v w Xa dV Xb dV Xc dV Volume element dV Body force: distributed force per unit volume (e.g., weight, inertia, etc)          b a X X X x y z x  cX NOTE: If the body is accelerating, then the inertia force may be considered as part of X            w        v u u u ~  XX z ST Volume (V) u v w Xa dV Xb dV Xc dV Volume element dV py pz px Traction: Distributed force per unit surface area       xp T SURFACE TRACTION x y x      z y p pS Docsity.com 5 Traction: Distributed force per unit area            z y x p p p T S n nx ny nz ST TS py px pz n If the unit outward normal to ST :         z y x n nn Then zzyzyxxz zyzyyxxy zxzyxyxx nnn nnn nnn       z y x p p p nx ny ST In 2D dy dx ds y n   TSpy px  dy dx dsx y xy xy C id h ilib i f h d ix x y n ds dy n ds dx     cos sin ons er t e equ r um o t e we ge n x-direction yxyxxx xyxx xyxx nnp ds dx ds dy p dxdydsp       Similarly yyxxyy nnp   3D elasticity problem is completely defined once we understand the following three concepts Strong formulation (governing differential equation + boundary conditions) Strain-displacement relationship Stress-strain relationship 2. Strain-displacement relationships: vu z w y v x u z y x              x w z u y w z v xy zx yz xy                    Docsity.com 6 Compactly; u                    y x 00 00 00    u         y x    (2)                               xz yz xy z 0 0 0       w vu             zx yz xy z     x y A B C A’ B’ C’ v udy dx dx x v   d u dy y u   dy y v v       1 2 In 2D x x u   x u x v tan βtan βββ)B'A'(C'angle 2 π y v dy dyvdy y v vdy AC ACC'A' x u dx dxudx x u udx AB ABB'A' 2121                                             xy y x    3D elasticity problem is completely defined once we understand the following three concepts Strong formulation (governing differential equation + boundary conditions) Strain-displacement relationship Stress-strain relationship 3. Stress-Strain relationship: Linear elastic material (Hooke’s Law)  D (3) Linear elastic isotropic material      0001                            2 21 00000 0 2 21 0000 00 2 21 000 0001 0001 )21)(1(       E D Docsity.com 7 Special cases: 1. 1D elastic bar (only 1 component of the stress (stress) is nonzero. All other stress (strain) components are zero) Recall the (1) equilibrium, (2) strain-displacement and (3) stress- strain laws 2. 2D elastic problems: 2 situations PLANE STRESS PLANE STRAIN 3. 3D elastic problem: special case-axisymmetric body with axisymmetric loading (we will skip this) PLANE STRESS: Only the in-plane stress components are nonzero Area element dA Nonzero stress components xyyx  ,, y x xy xy h D A i x y ssumpt ons: 1. h<<D 2. Top and bottom surfaces are free from traction 3. Xc=0 and pz=0 PLANE STRESS Examples: 1. Thin plate with a hole y x xy xy 2. Thin cantilever plate Nonzero strains: xyzyx  ,,, Isotropic linear elastic stress-strain law                    y x y x E       01 01 1 2  D  yxz   1 Nonzero stresses: xyyx  ,, PLANE STRESS         xyxy   2 1 00 Hence, the D matrix for the plane stress case is               2 1 00 01 01 1 2     E D  Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved