Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Gaussian Beams: Properties, Intensity Distribution, and Experiment - Prof. Wendell T. Hill, Lab Reports of Physics

An introduction to gaussian beams, their intensity distribution, and the experimental determination of their beam waist and divergence angle. It includes equations for the radial irradiance distribution, the variation of the beam waist with propagation distance, and the radius of curvature of the wave front. Students will learn how to measure these parameters using a laser and a photodetector.

Typology: Lab Reports

Pre 2010

Uploaded on 07/30/2009

koofers-user-9ik
koofers-user-9ik 🇺🇸

10 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download Gaussian Beams: Properties, Intensity Distribution, and Experiment - Prof. Wendell T. Hill and more Lab Reports Physics in PDF only on Docsity! Experiment 0– Gaussian beams 1 Experiment 0 Properties of a Gaussian Beam 1 Introduction We will look at the intensity distribution of a laser beam. The out- put of a laser is different than that of most other light sources. The laser resonator determines the spatial characteristics of the laser beam. Most Helium Neon (HeNe) lasers have spherical-mirror Fabry-Perot res- onators that have Hermite-Gaussian spatial modes. Usually only the lowest order transverse resonator (TEM00) mode oscillates, resulting in a Gaussian output beam. 2 Background - see Pedrotti3, Chap. 27 The irradiance (proportional to the square of the electric field) of a Gaussian beam is symmetric about the beam axis and varies with radial distance r from the axis as I(r) = I0 exp(−2r2/w20) (1) Here w0 is the radial extent of the beam where the irradiance has dropped to 1/e2 of its value on the beam axis, I0. A Gaussian beam has a waist, where w0 is smallest. It either diverges from or converges to this beam waist. This divergence or convergence is measured by the angle θ which is subtended by the points on either side of the beam axis where the irradiance has dropped to 1/e2 of its value on the beam axis, this is the place where the electric field has dropped by 1/e. Under the laws of geometrical optics a bundle of rays (a beam) con- verging at an angle of θ should collapse to a point. Because of diffrac- tion, this does not occur. However, at the intersection of the asymptotes Experiment 0– Gaussian beams 2 that define θ, the beam diameter reaches a minimum value d0 = 2w0, the beam waist diameter. The variation of the beam waist w as a function of propagation distance z is: w(z) = w0 √ 1 + ( z z0 )2 (2) with the Rayleigh length z0 given by: z0 = πw20 λ (3) For a TEM00 mode, w0 depends on the beam divergence angle, w0 = 2λ/πθ, where λ is the wavelength of the radiation. The product w0θ is constant for a Gaussian beam of a particular wavelength. A beam with a very small beam waist, w0, requires that the divergence angel, θ, be large, while a highly collimated beam with small θ must have a beam waist that is large. The most important characteristic of the beam is the phase. The phase is flat (infinite curvature) at the waist w0, then grows to a max- imum at z0 and returns to flat at infinity. The curvature of the wave front is given by the Radius of Curvature R. R(z) = z √ 1 + (z0 z )2 (4) 3 Experiment Please be very careful when using a laser. Parallel light gets focused and that can happen with a laser beam in your retina. In the following experiments, you will find the divergence of your laser, θ, and the beam waist of the laser, w0. Use the appropriate limit (z >> z0) of equation 2 to define the divergence angle (θ) in terms of the other parameters (see Fig. 1). Use the diverging lens to produce a large laser beam. Take the photodetector and place the small aperture on it. You will measure the Gaussian profile of the laser using a scanning detector and the computer interface. The data will be in the form of a text file with two columns of numbers – one for time and the other for voltage that will be proportional to the irradiance. You will acquire data with the computer and then fit the data to a Gaussian. Make sure you understand the software you use for the fit.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved