Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Thermodynamics and Heat Transfer for Heat and Refrigeration Technology, Schemes and Mind Maps of Aerodynamics

A comprehensive overview of a course on thermodynamics and heat transfer, focusing on the application of these principles to thermal engineering applications such as thermal power plants, refrigeration and air conditioning systems, dryers, boilers, internal combustion engines, heat exchangers, and more. The course covers topics such as the first and second laws of thermodynamics, basic processes of ideal gas, pure substance, calculation of heat by using specific heat, basic processes of ideal gas, and more. The document also includes various calculations, equations, and examples to help students understand the concepts.

Typology: Schemes and Mind Maps

2020/2021

Uploaded on 03/23/2024

duy-nguyen-djuc-2
duy-nguyen-djuc-2 🇻🇳

3 documents

1 / 39

Toggle sidebar

Related documents


Partial preview of the text

Download Thermodynamics and Heat Transfer for Heat and Refrigeration Technology and more Schemes and Mind Maps Aerodynamics in PDF only on Docsity! THERMODYNAMICS & HEAT TRANSFER  Duration: 36 hours during 12 weeks (4 teaching units/week) - Week 1  8 : Thermodynamics + Week 8 : Midterm Exam - Week 9  12 : Heat Transfer Final Exam 20% 40%  Instructor: HÀ ANH TÙNG – Department of Heat and Refrigeration Technology Instructor: Dr. Tung Ha – Anh HCMUT 2/2016 + Week 4 : Test 1 + Week 10 : Test 2 15% 10% - Week 9  13 : Experimental 15% 1 Objectives of the course  to provide students with knowledge and skills required to apply the basic principles of thermodynamics and heat transfer to perform calculations and explain thermal engineering applications: Ex: - Thermal power plans - Refrigeration and air conditioning systems - Dryers, boilers 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT - Internal combustion engines - Heat exchangers, etc. 2 CHAPTER 3 : Basic Processes of Ideal Gas 3.1 Equation of Ideal Gas 3.2 Specific Heat of Gas 5 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT Part 1: THERMODYNAMICS 3.3 Basic Processes of Ideal Gas 3.1 Equation of Ideal Gas  IDEAL GAS is a hypothetical gas whose molecules occupy negligible space and have no interactions  Real gas can be considered as ideal gas at low pressures and high temperatures 6 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT New words: Ideal gas: Khí lý tưởng Molecules occupy negligible space: Phân tử chiếm thể tích không đáng kể Real gas: Khí thực Low pressures and high temperatures: Áp suất thấp và nhiệt độ cao Equation of Ideal Gas (Clapeyron equation) RTpv  or: GRTpV  in which: - p (N/m2): absolute pressure of the gas - v (m3/kg): specific volume of the gas - V (m3): volume of the gas - T (K): absolute temperature of the gas - G (kg): mass of the gas - R (J/kg.độ) gas constant   8314  R R  is the molecular weight of 1 kmol (Ex:  of O2 is 32 kg, of N2 is 28 kg, etc) 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 7 3.2 Specific Heat of Gas  is the heat required to raise the temperature of the unit of a given substance by one degree Celsius  Classification: - Mass - Specific Heat c (kJ/kg/độ) - Volume - Specific Heat c’ (kJ/m3/độ) - kmol – Specific Heat c (kJ/kmol.độ) '4.22 ccc   Relation  We usually use 2 types: cp, cp (at constant pressure); cv, cv (at constant volume) 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 10 kmol - Specific Heat of gases (kcal/kmol.độ)  Note: 1 kcal = 4.186 kJ Types of gas kcal/kmol.độ k = cp/cv cv cp Gas of 1 atom (Monatomic gas) 3 5 1.6 Gas of 2 atoms (O2, N2, Air ...) 5 7 1.4 Gas of 3 or more than 3 atoms (CO2, NH3, …) 7 9 1.3 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 11 kmol – Specific Heat of gas  Ex: - O2: cp= 29.3  cp= cp/ = 29.3/32 = 0.9156 kJ/kg.độ - CO2: cp= 37.7  cp= cp/ = 37.7/44 = 0.857 kJ/kg.độ - AIR: cp (kk) = 0.23 cp (O2) + 0.77 cp (N2) = 1.016 kJ/kg.độ Types of gas kJ/kmol.độ k = cp/cv cv cp Gas of 1 atom (Monatomic gas) 12.6 20.9 1.6 Gas of 2 atoms (O2, N2, Air ...) 20.9 29.3 1.4 Gas of 3 or more than 3 atoms (CO2, NH3, …) 29.3 37.7 1.3 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 12 3.3 Basic Processes of IDEAL GAS 3.3.1 Procedure for calculating a process of Ideal Gas 3.3.2 Isochoric process v = const 3.3.3 Isobaric process p = const 3.3.4 Isothermal process T = const 3.3.5 Adiabatic process Q = 0 3.3.6 Polytropic process pvn = const 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 15 3.3.1 Procedure for calculating a process of Ideal Gas Step 1: outline the ENERGY TRANSFER of the process 111 RTvp  222 RTvp  (u1, i1, s1) (u2, i2, s2) Process 1-2 Q, W ? Step 2: determine: - Known parameters? - Unknown parameters? - Equation of the process ? 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 16 Step 3: Calculation 1/ From the process equation  determine unknown parameters p1, v1, T1 p2, v2, T2 Attention: Ideal Gas  cp=cv + R 2/  1212 TTcuuu v  (kJ/kg)  1212 TTciii p  (kJ/kg) T dq ds  (kJ/kg.K) 3/ Expansion (compression) work of the process  2 1 v v pdvw Technical work of the process:  2 1 p p KT vdpw 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 17 3/ Expansion/compression work of Isochoric process: 0 2 1   v v pdvw 4/ Heat transferred in Isochoric process:   uTTcq v  12 (kJ/kg) 5/ Presentation in p-v and T-s diagram Technical work of Isochoric process:  21 2 1 ppvvdpw p p KT   2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 20 3.3.3 Isobaric process p = const 1/ Equation of Isobaric process: 2 2 1 1 T v T v constp  2/  1212 TTcuuu v  (kJ/kg)  1212 TTciii p  (kJ/kg)              1 2 1 2 lnln v v c T T cs T dTc T dq ds pp p (kJ/kg.K) 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 21 3/ Expansion/Compression work of Isobaric process:    1212 2 1 TTRvvppdvw v v   (kJ/kg) 4/ Heat transferred in Isobaric process:   wuiTTcq p  12 (kJ/kg) 5/ Biểu diễn quá trình đẳng áp trên đồ thị công p-v và đồ thị nhiệt T-s Technical work:   2 1 0 p p KT vdpw 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 22 5/ Presentation in p-v and T-s diagram 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 25 3.3.5 Adiabatic process Q = 0 1/ Equation of Adiabatic process: kk k vpvp constpvq 2211 0   Note: v p c c k Adiabatic index ; 1 2 1 1 2 k p p v v        1 2 1 1 1 2 1 2                k k k v v p p T T; 2 1 1 2 k v v p p        2/  12 TTcu v  (kJ/kg)  12 TTci p  (kJ/kg) 1200 sss T dq ds  (kJ/kg.K) 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 26 3/ Expansion/Compression work of Adiabatic process:   2 1 2 1 11 v v k k v v v dv vppdvw (kJ/kg)   11 2211 21      k vpvp TT k R w - From definition: - From the 1st law:  210 TTcuwwuq v                                     1 2 111 1 2 11 1 1 1 1 kk v v k vp v v k RT wor:                                        k k k k p p k vp p p k RT w 1 1 211 1 1 21 1 1 1 1 or: * Technical work of Adiabatic process: wkwKT  2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 27 2/ Calculation of the Polytropic exponent n 1 2 2 1 log log v v p p n  2 1 1 2 log log 1 v v T T n  1 2 1 2 log log 1 p p T T n n   or: or: 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 30 3/  12 TTcu v  (kJ/kg)  12 TTci p  (kJ/kg) or from: pdvdTcdq v  1 2 1 2 lnln v v R T T cs v  or from: vdpdTcdq p  1 2 1 2 lnln p p R T T cs p  or from: RdTvdppdv  1 2 1 2 lnln p p c v v cs vp         1 2ln T T cs T dTc T dq ds n (kJ/kg.K) 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 31 4/ Expansion/Compression work of Polytropic process:   2 1 2 1 11 v v n n v v v dv vppdvw (kJ/kg) - From definition:                                    1 2 111 1 2 11 1 1 1 1 nn v v n vp v v n RT wor:                                        n n n n p p n vp p p n RT w 1 1 211 1 1 21 1 1 1 1 or:   11 2211 21      n vpvp TT n R w * Technical work of Polytropic process: wnwKT  2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 32 Example: p1= 1 at T1= 20 oC Adiabatic p2= 8 at ?2T ?2v ?w The process is adiabatic, hence: k k p p T T 1 1 2 1 2         2T 222 RTvp  2v   021  TTcw v The system received external work (Air is compressed) 2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 35 Example: Polytropic p1= 1 bar T1= 27 oC 3kg KK p2= 15 bar T2= 227 oC ?n ?2V ?W ?Q The process is polytropic, hence: 1 2 1 2 log log 1 p p T T n n   n 222 GRTVp  2V  21 1 TT n R GGwW    và  12 1 TT n kn cGGqQ v     2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 36 Example: p1= 5 bar t1= 120oC KK t2= 50 oC ?s Polytropic q = 60 kJ/kg Polytropic process:        1 2ln T T cs n determine cn ? kgkJ T q cTcq nn /857.0 12050 60      Từ: KkgkJ T T cs n ./168.0 273120 27350 ln857.0ln 1 2                2/2016 Instructor: Dr. Tung Ha – Anh HCMUT 37
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved