Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Kirchhoff's Voltage and Current Laws in AC Circuits, Study notes of Law

Electrical Power SystemsElectromagnetismAC CircuitsPower Electronics

Kirchhoff's Voltage Law (KVL) and Current Law (KCL) applications in AC circuits. It includes examples of loops and nodes calculations, as well as discussions on instantaneous power, impedance angle, and apparent, active, and reactive powers.

What you will learn

  • What is Kirchhoff's Voltage Law (KVL) in AC circuits?
  • What is the difference between real (active) power, reactive power, and apparent power in AC circuits?
  • How to calculate the currents arriving at a node using Kirchhoff's Current Law (KCL)?

Typology: Study notes

2021/2022

Uploaded on 09/07/2022

zaafir_ij
zaafir_ij 🇦🇪

4.4

(60)

888 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download Kirchhoff's Voltage and Current Laws in AC Circuits and more Study notes Law in PDF only on Docsity! 12 Kirchhoff’s Voltage Law (KVL) • The algebraic sum of the voltages around a closed loop (CW/CCW) is zero ( voltage rises =  voltage drops) – Applied to both instantaneous voltages or voltage phasors • Loop 24312 (BCDA, CW): E24+E43+E31+E12=0 or e24+e43+e31+e12=0 • Loop 2342 (ECF, CCW): E23+E34+E42=0 or e23+e34+e42=0 E12 E43 E31 E24 E23 4 2 1 3 E34 E42 13 Kirchhoff’s Current Law (KCL) • The algebraic sum of the currents arriving at a node is equal to 0. ( currents in =  currents out) • Node A: I1+I3=I2+I4+I5 or i1+i3=i2+i4+i5 I1+I3+(-I2)+(-I4)+(-I5)=0 or i1+i3+(-i2)+(-i4)+(-i5)=0 A 16 Impedance angle: >0 for inductive load and <0 for capacitive load         ( ) ( ) ( ) cos( )cos( ) 1 cos( ) cos(2 ) 2 1 cos( ) cos[2( ) ( )] 2 1 cos cos[2( ) ] 2 1 cos cos cos 2( ) sin sin 2( ) 2 m m e i m m e i e i m m e i e e i m m e m m e e p t e t i t E I E I E I E I E I                                                   | | / 2 | | / 2 m m E E I I   e i    ( ) cos [1 cos 2( )] sin sin 2( ) R X e e p p p E I E I                Using trigonometric identity 1 cos cos cos( - ) cos( ) 2 A B A B A B   Instantaneous Power ( ) cos( )m ee t E t   ( ) cos( )m ii t I t   Load Z + t  17 100cose  1.25 60 0.625 1.0825 ΩZ j     80 60 2 I     80cos( 60 )oi   Example: 100 0 2 E    ( ) cos [1 cos 2( )] sin sin 2( ) 2000(1 cos 2 ) 3464 sin 2 R X XR e e p p pp p E I E I                      2000 3464 e i 18 Observations: • The frequency of p, pR and pX is twice of e and i, which is 602=120Hz • pR(t) – changes between 0 and 4000 (=2|E||I|cos ) – always 0, and has an average value of 2000 (=|E||I|cos ) – is the power consumed by the load • pX(t) – changes between 3464 (=  |E||I|sin) – has an average value of 0 – is the power borrowed & returned by the load. ( ) ( ) ( )( ) ( ) cos [1 cos 2( )] sin sin 2( ) (1 cos 2 320 46 n 200 ) 4si R X XR e e p t p t p tp t p t E I E I                    
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved