Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Lab Experiment: Measuring Capacitance without a Capacitance Meter, Lab Reports of Electrical and Electronics Engineering

A laboratory experiment for electrical and computer engineering students to measure capacitance using available resources such as resistors, a variable frequency signal generator, a digital multimeter, and an oscilloscope. Instructions for deriving theoretical models for step response and frequency response, as well as experimental procedures for estimating capacitance values based on these models. Students are required to build circuits, use measurement instruments, and analyze data to determine capacitance values.

Typology: Lab Reports

Pre 2010

Uploaded on 10/01/2009

koofers-user-30q
koofers-user-30q 🇺🇸

10 documents

1 / 6

Toggle sidebar

Related documents


Partial preview of the text

Download Lab Experiment: Measuring Capacitance without a Capacitance Meter and more Lab Reports Electrical and Electronics Engineering in PDF only on Docsity! EE 462G Laboratory # 1 Measuring Capacitance By Drs. A.V. Radun and K.D. Donohue (1/24/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Laboratory #1: Pre-lab and data sheet due for Laboratory 1 at the end of the class period. I. Instructional Objectives  Introduce lab instrumentation with linear circuit elements  Introduce lab report format  Develop and analyze measurement procedures based on 2 theoretical models  Introduce automated lab measurement and data analysis II. Background A circuit design requires a capacitor. The value of an available capacitor cannot be determined from its markings, so the value must be measured; however a capacitance meter is not available. The only available resources are different valued resistors, a variable frequency signal generator, a digital multimeter (DMM), and an oscilloscope. Two possible ways of measuring the capacitor’s value are described in the following paragraphs. For this experiment, the student needs to select resistors and frequencies that are convenient or feasible for the required measurements and instrumentation. Be sure to use the digital multimeter (DMM) to measure and record the actual resistance values used in each measurement procedure. III. Pre-Laboratory Exercise Step Response Model: 1. For a series voltage source (v(t)) , resistor (R), and capacitor (C), derive the complete solution for the capacitor voltage when the source is a step with amplitude A and the capacitor voltage is 0 right before the step function turns on. 2. Assume the source (v(t)) is a function generator, where the source voltage can only be measured after the 50 Ω internal resistance. Find the step response (with amplitude A) in terms of R and C for the both vc(t) and voltage measured at the output of the function generator, vm(t), as shown in Fig. 1. (Hint: First find vc(t) as in the previous problem (now total circuit resistance becomes (R+50) and the rest is the same). Then the loop current is Cdvc/dt and vm(t) is the drop over the circuit resistor + vc ). Figure 1. Test Circuit accounting for output impedance of function generator. 3. For the step response model derived in Problem 1, determine the value of C if R=200, A = 5 volts, and the step response is approximately 2.3 volts at t = 10 ms (assume input step turns on at t=0). 4. Describe an experimental procedure that uses ideas from the model of Problem 1 along with a known resistor value, a periodic function generator, and an oscilloscope to estimate a capacitor value. (Hint: It is critical to describe the circuit you construct, placement of oscilloscope probes, values read from the scope, and the formula used to estimate the capacitor value. It would be best to use a reading at a specific waveform amplitude to enhance accuracy of the reading and make final computation simpler.) Frequency Response Model: 5. For a series voltage source (v(t)) , resistor (R), and capacitor (C), derive the transfer function with input v(t) and output the capacitor voltage. Write explicit equations for the magnitude and phase of the transfer function. 6. Repeat Problem 5 for the circuit of Fig. 1, and find transfer function from input vm to output vc. (Note: If you did the derivation correctly the 50Ω resistor does not affect this transfer function. Therefore, if the phase difference and magnitude scaling between vm and vc are measured directly, the 50Ω internal impedance will not have to be accounted for even when small resistors values are used.) 7. For the frequency response model derived in Problem 5, determine the value of C, given v(t) is a 4 volt peak-to-peak sinusoid at frequency f=1.5kHz, R=200, and the amplitude of the sinusoidal voltage across the capacitor voltage vc(t) is 2.8 volts peak-to-peak. 8. For the frequency response model derived in Problem 5, determine the value of C, given v(t) is a sinusoid at frequency f=4kHz, R=6k, and the phase between v(t) and capacitor voltage vc(t) is 45 (/4 radians). 9. Describe an experimental procedure that uses ideas from the frequency model along with a known resistor value, a periodic function generator, and a 2-channel oscilloscope to estimate a capacitor value. + vm(t) _ v(t) R50Ω vc(t)C For testing how the GPIB interface works make sure the oscilloscope and function generator are attached as in Fig. 2, instruments are turned on, and USB GPIB cables are connected to the computer and instruments. Put Channel 1 over the input (function generator) and Channel 2 over the output (capacitor). Then execute the program “test_use_keyboard.exe.” Once the interface comes up, enter an amplitude and frequency in the boxes and click the RUN button. The scope and function generator will respond to the GPIB commands sent from the program to the instruments. Once the instruments have stabilized, the program will then read from the instruments (using the MEASURE features of the oscilloscope) and present the data in table on the GUI. The green indicator light will toggle to indicate the program has finished making the measurement. Try this again for other frequencies and amplitudes. Select 4 resistors (they do not have to be the same ones used in the step response experiments. Then try to find the frequency that results in an approximate 45 degree phase shift. It does not have to be very close (between 40 and 50 degrees is fine). Record this frequency and the actual phase shift for each resistor. If any resistors force the cutoff into a very high or very low range, making measurements difficult, select another resistor and repeat the measurements. 3. For each resistor, create an ASCII file (you can use Notepad, MS word with the save as TEXT file option, or even Matlab’s editor to do this) with a list of frequency values in Hz (separated by carriage returns), where the frequencies span a range that includes the cutoff frequency of low-pass circuit. Start about a decade before and go to about a decade after the frequency cut-off (the frequencies do not have to be uniformly spaced, however, you should make them more dense around the expected cut-off value). Do not use more than 20 points as it may take too long to finish. Save this file in convenient directory (remember were you put it) and execute the “test_use_file_freq.exe” program. Enter an amplitude of 4. Then click the “Input frequency from file” button and direct the program to open the file you just saved. The program will start to run and you can see the instruments respond while filling the table on the GUI with the measure values. When finished, the green indicator light in the GUI will go on. Click the button to save the measured data. Select a descriptive file name so you know what data goes with what resistor. (You should also save these files to a floppy or on the network where you can access them later when doing the report). Then run your Matlab script to estimate the cutoff frequency based on the magnitude and phase of your measured transfer function (don’t forget to update the resistor values and file names). Run this program several times making adjustments on the cut-off frequency range value or increments as needed until you are satisfied with the results. You may notice frequencies at which bad measurements occurred (they will typically have number way out of range, like 99999999 for a phase angle). You can delete these lines from the text file before processing with the curve fit program. Record the results (printouts of the table values, with estimates of center frequency, and capacitor values written on your data sheet) form each trial in your datasheet. Present the tables of measured frequencies in results section and data sheet (you should have table for the 4 different values of R clearly labeled). For the results section of your final report, also compute the mean and 95% confidence limits over all your best-fit transfer function magnitude capacitor estimates, and the same for all your best-fit transfer function angle estimates. Then combine the estimate from both magnitude and phase estimates to compute the mean and 95% confidence limits of that. In the procedure section, address/include the following: a. Describe the quantities you want to measure and/or the relationship you want to find. Identify independent and dependent variables. b. Describe the set up (equipment and supplies used and configured). Include a description of probe placement, and grounding issues associated with your circuit if appropriate. (Where are the grounds for the oscilloscope and signal generator this circuit, and why should they be there?) Add proper ground symbols to your circuit and measurement equipment. c. Indicate the name of the program used to apply multiple frequency values and how you determined the frequency for each resistor. d. Describe program used on the measured data to estimate final results. Include the script or sample script as an appendix. The discussion section should explain the results relative to the theory. You should be as quantitative as possible here. If you are comparing measurements, don’t say “the measurement were about the same.” Indicate differences numerically. Also indicate whether the capacitor values estimated by the different methods were significantly different. If so, try to explain why the difference existed and suggest which values are probably more accurate. The different method were the step response estimates, the frequency response estimate with transfer function magnitude, with transfer function angle, and combined transfer function magnitude and phase. If variations were within the confidence limits of the estimates from different methods you can attribute that to experimental error. However, even if they are within the range and you feel something went wrong in the experiment resulting in too high of a variance because of a mistake or malfunctioned piece of equipment, you should indicate this. If differences between methods were outside each other’s confidence range consider contributions from mistakes in your implementation of the procedures, faulty connections, components, equipment, or a limitation of the theory used to develop the estimation process. Comment on the difficulty or efficiency of each measurement procedure. In the conclusion section summarize what was accomplished in your experiment and discuss how well the lab exercise met the lab objectives.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved