Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Laplace Equations and Separation of Variables in Electromagnetism | PHY 481, Study notes of Physics

Material Type: Notes; Class: Electricity and Magnetism I; Subject: Physics; University: Michigan State University; Term: Fall 2006;

Typology: Study notes

Pre 2010

Uploaded on 07/28/2009

koofers-user-kja
koofers-user-kja 🇺🇸

10 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download Laplace Equations and Separation of Variables in Electromagnetism | PHY 481 and more Study notes Physics in PDF only on Docsity! Lecture 20 Carl Bromberg - Prof. of Physics PHY481: Electromagnetism Solving Laplace’s equation via “Separation of Variables” 1) Cartesian coordinates ✓ 2) Spherical coordinates      3) Cylindrical coordinates     Examples    Lecture 20 Carl Bromberg - Prof. of Physics 1 Cartesian coordinates  Determine nature of solutions on the rectangle (unbounded z) – Grounded at x = –a/2 or +a/2 then Xk(x) = Akcos(kx) +Bksin(kx) – Grounded at y = –a/2 or +a/2 then Yk(y) = Akcos(ky) +Bksin(ky) – Other solution is then Uk(u) = Ckcosh(ku) + Dksinh(ku) (same k)  Use periodic (sine or cosine) solution and boundary conditions to determine legal values of k = nπx/a (same for both solutions)  Generate general solution V(x,y) = Σ Xk(x)Yk(y)  Use additional boundary conditions to determine coeficients – Periodic B.C.: Vb(x0,y) = Σ Xk(x0)Yk(y) or Vb(x,y0) = Σ Xk(x)Yk(y0) – Apply Fourier Integral to both sides: Be sure to split Fourier integral (-a,-a/2,a/2,a) – Use orthogonality on right side: – Determine coef. Ak,Bk,Ck,Dk  Substitute into V(x,y) = Σ Xk(x)kY(y) 1 a Vb(x, y0 )cos mπ x a −a a ∫ (or y version) cos nπ x a( )cos mπ x a( ) −a a ∫ = δmn (or y version) Lecture 20 Carl Bromberg - Prof. of Physics 4 Familiar problem in spherical coordinates Orthogonality of Legendre polynomials: Pm cosθ( )Pn cosθ( )d cosθ( ) −1 1 ∫ = 2δmn 2n+1 Consider a grounded conducting sphere radius, a, in a constant external field, E0 in z direction V (a,θ) = 0 = Aa  + Ba − +1( )( ) =0 ∞ ∑ P cosθ( ) V (a,θ)Pn cosθ( ) −1 1 ∫ d cosθ( ) = 0 = Aa + B a +1 ⎛ ⎝⎜ ⎞ ⎠⎟=0 ∞ ∑ P cosθ( )Pn cosθ( ) −1 1 ∫ d cosθ( ) Multiply by Pn cosθ( ) and integrate 0 = Ana n + Bna − n+1( )( )2 2n +1( ) Bn = −Ana 2n+1 Boundary condition V = 0 on sphere Boundary condition V (r →∞,θ) = −E0z = −E0r cosθ = −E0r cosθ + E0a 3 cosθ r 2 cosθ = P1(cosθ) ⇒  = 1 A1 = −E0 V (r,θ) = Ar  + B r +1 ⎛ ⎝⎜ ⎞ ⎠⎟=0 ∞ ∑ P cosθ( ) uniform field dipole E0a 3 = p 4πε0 dipole moment E field Lecture 20 Carl Bromberg - Prof. of Physics 5 Cylindrical coordinates ∇2V (r,θ) = 1 r ∂ ∂r r ∂V ∂r ⎛ ⎝⎜ ⎞ ⎠⎟ + 1 r 2 ∂2V ∂φ2 = 0 V (r,φ) = R(r)Φ(φ) r 2 V ∇2V (r,φ) = r R ∂ ∂r r ∂R ∂r ⎛ ⎝⎜ ⎞ ⎠⎟ + 1 Φ ∂2Φ ∂φ2 = 0 Rn(r) = Anr n + Bnr −n n 2 −n 2 Φn(φ) = Cn cos nφ + Dn sin nφ V (r,φ) = Aln r + B + Anr n + Bnr −n( ) Cn cos nφ + Dn sin nφ( ) n=1 ∞ ∑ R0(r) = Aln r + B Laplace’s equation in cylindrical coordinates Separation of variables r dependence φ dependence Constants sum to zero Separate solutions Solution with series to insure boundary conditions can be satisfied Lecture 20 Carl Bromberg - Prof. of Physics 6 Cylinder problem Half cylinders, radius R. V = +V 0 on right half, and V = -V 0 on left half Find potential inside and out. V (r,φ) = Aln r + B + Anr n + Bnr −n( ) Cn cos nφ + Dn sin nφ( ) n=1 ∞ ∑ VInt (r,φ) = Anr n cos nφ n=1 ∞ ∑ VExt (r,φ) = Bnr −n cos nφ n=1 ∞ ∑ cos nφ cos mφ = πδnm 0 2π ∫ Boundary conditions at r = 0 and r = ∞ Orthogonality VInt (R,φ) =VExt (R,φ) AnR n = BnR −n = cn An = cn R n ; Bn = cnR n VInt (r,φ) = cn r n R n cos nφ n=1 ∞ ∑ VExt (r,φ) = cn R n r n cos nφ n=1 ∞ ∑ Use Orthogonality c j = 4V0(−1) j π (2 j +1) sin 2 j +1( )π 2 VInt (r,φ) = 4V0 π −1( ) j 2 j +1 r 2 j+1 R 2 j+1 cos(2 j +1)φ j=0 ∞ ∑ VExt (r,φ) = 4V0 π −1( ) j 2 j +1 R 2 j+1 r 2 j+1 cos(2 j +1)φ j=0 ∞ ∑ Complete solutionBe careful to break Fourier integral into pieces !! f (φ) = V0 1 st & 4 rd quadrants −V0 2 nd & 3 th quadrants ⎧ ⎨ ⎪ ⎩⎪
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved