Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Linearity and Equivalent Circuits: Finding Thevenin and Norton Equivalents, Study notes of Electrical Circuit Analysis

How to find Thevenin and Norton equivalents of any linear circuit with ideal independent sources, linear dependent sources, and resistors. It covers the concepts of Thevenin and Norton equivalent circuits, their compositions, and how to determine their values using two points on the I-V graph. The document also includes useful identities and examples.

Typology: Study notes

2021/2022

Uploaded on 09/27/2022

stefan18
stefan18 🇺🇸

4.2

(34)

53 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download Linearity and Equivalent Circuits: Finding Thevenin and Norton Equivalents and more Study notes Electrical Circuit Analysis in PDF only on Docsity! Lecture 8: Linearity and Equivalent Circuits Every circuit which is composed of ideal independent voltage and current sources, linear dependent sources, and resistors, has a linear I-V relationship. There is a simpler circuit with the same I-V relationship. I v Thevenin Equivalent Circuit The Thevenin equivalent circuit is composed of a voltage source in series with a resistor: It can model any circuit except a pure independent current source, through choice of VT and RT. I v VTH -VTH/RTH a b Norton Equivalent Circuit The Norton equivalent circuit is composed of a current source in parallel with a resistor: It can model any circuit except a pure independent voltage source, through choice of IN and RN. I v INRN -IN a b Two Points Define a Line To find the Thevenin or Norton equivalent for a circuit, all we need to do is:  Find two points on the I-V graph for the circuit.  Set the voltage V and find the corresponding I  Set the current I and find the corresponding V  Find the x-intercept and y-intercept of the graph.  Find the VTH and RTH, or the IN and RN that replicate this line. VTH and IN Come From Independent Sources  If there are no independent voltage or current sources in a circuit, VTH = 0 V and IN = 0 A.  If there is no independent voltage or current present in a circuit (only resistors and linear dependent sources), all currents and voltages in the circuit are zero.  In this situation, you know that the I-V graph goes through the origin.  However, the slope of the graph, 1/RTH, still must be determined. It cannot be found using RTH = VTH / IN. No Independent Sources? Test for RTH  A simple example of a circuit with no independent sources is a resistor.  One cannot determine the resistance by measuring voltage and current—a resistor has no voltage or current on its own.  An ohmmeter applies a test voltage and measures the resulting current to find resistance.  Do the same to find RTH : Set V using an independent voltage source, and measure I.  Or, set I using an independent current source, and measure V.  RTH = V / I  Here, you are finding an additional point on the I-V graph. Example Find the Thevenin and Norton circuits. RTH Comes From Resistors and Linear Dependent Sources  The value of RTH does not depend on the values of independent voltage and current sources in a circuit.  I can turn a 12 V source into a -12 V source, or a 0 V source, and the value of RTH remains the same.  When looking for RTH in a circuit that has no dependent sources, it is often easier to:  Turn off all independent sources (change voltage sources to 0 V wire and current sources to 0 A air)  Simplify remaining resistors using series/parallel combinations to find RTH Example Find RTH. Source Transformations One can change back and forth between Thevenin and Norton: = =
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved