Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Lecture 4: Rotation and Translation in Bioinformatics 2, Study notes of Biology

The concept of rotation and translation in bioinformatics 2, focusing on least-squares superposition and the calculation of rotation matrices when moving the mouse to rotate a molecule. It covers the mathematical formulas for rotation angles, new atom coordinates, and the sum of angles formula.

Typology: Study notes

Pre 2010

Uploaded on 08/09/2009

koofers-user-i3u
koofers-user-i3u 🇺🇸

10 documents

1 / 27

Toggle sidebar

Related documents


Partial preview of the text

Download Lecture 4: Rotation and Translation in Bioinformatics 2 and more Study notes Biology in PDF only on Docsity! Bioinformatics 2 -- lecture 4 Rotation and translation Least-squares superposition What happens when you move the mouse to rotate a molecule? Mouse sends mouse coordinates (Δx,Δy) to the running program Rotation angles are calculated: θx = Δx*scale, θy = Δy*scale Rotation matrices are calculated: x R = 1 0 0 0 cos! x " sin! x 0 sin! x cos! x # $ % % % & ' ( ( ( yR = cos! y 0 " sin!y 0 1 0 sin! y 0 cos!y # $ % % % % & ' ( ( ( ( 2. 1. 3. y x Sum of angles formula cos (α+β) = cos α cos β − sin α sin β sin (α+β) = sin α cos β + sin β cos α A rotation matrix β x y r α (x,y) (x’,y’) x' = |r| cos (α+β) = |r|(cos α cos β − sin α sin β) = (|r| cos α) cos β − (|r| sin α)sin β = x cos β − y sin β y' = |r| sin (α+β) = |r|(sin α cos β + sin β cos α) = (|r| sin α) cos β + (|r| cos α) sin β = y cos β + x sin β x = |r|cos α y = |r|sin α x' y' ! " # $ % & = cos' ( sin ' sin' cos ' ! " # # $ % & & rcos) rsin) ! " # $ % & = cos ' (sin ' sin ' cos' ! " # # $ % & & x y ! " # $ % & rotation matrix is the same for any r, any α. A rotation around a principle axis The Z coordinate stays the same. X and Y change. cos! " sin ! 0 sin! cos ! 0 0 0 1 # $ % % % & ' ( ( ( Rz = cos! 0 sin! 0 1 0 " sin! 0 cos! # $ % % % & ' ( ( ( 1 0 0 0 cos! " sin! 0 sin! cos! # $ % % % & ' ( ( ( The Y coordinate stays the same. X and Z change. The X coordinate stays the same. Y and Z change. Ry = Rx = Rotating in opposite order gives a different matrix x R y R = 1 0 0 0 cos!x " sin!x 0 sin!x cos! x # $ % % % & ' ( ( ( cos!y 0 "sin!y 0 1 0 sin!y 0 cos!y # $ % % % % & ' ( ( ( ( = cos!y 0 " sin!y " sin! x sin!y cos!x " sin!x cos!y sin!y cos! x sin!x cos! x cos!y # $ % % % % & ' ( ( ( ( Reversing the rotation x' y' ! " # $ % & = cos' sin ' ( sin ' cos ' ! " # # $ % & & x y ! " # $ % & For the opposite rotation, flip the matrix. The inverse matrix = The transposed matrix. cos! sin ! " sin ! cos ! # $ % % & ' ( ( cos! " sin ! sin ! cos! # $ % % & ' ( ( = 1 0 0 1 # $ % & ' ( A B C D ! " # # $ % & & T = A C B D ! " # # $ % & & This is the “transpose” NOTE: cosb cosb + sinb sinb = 1 Example: rotation in 2 steps Rotate the vector v=(1.,2.,3.) around Z by 60°, then around Y by -60° cos60° ! sin60° 0 sin60° cos60° 0 0 0 1 " # $ $ $ % & ' ' ' 1 2 3 " # $ $ $ % & ' ' ' = 1(0.5) ! 2(0.866) + 3(0) 1(0.866) + 2(0.5) + 3(0) 0 + 0 + 3(1) " # $ $ $ % & ' ' ' = !1.232 1.866 3 " # $ $ $ % & ' ' ' cos60° 0 ! sin 60° 0 1 0 sin60° 0 cos 60° " # $ $ $ % & ' ' ' !1.232 1.866 3 " # $ $ $ % & ' ' ' = !1.232(0.5) +1.866(0) ! 3(0.866) !1.232(0) +1.866(1) + 3(0) !1.232(0.866) +1.866(0) + 3(0.5) " # $ $ $ % & ' ' ' = !3.214 1.866 0.433 " # $ $ $ % & ' ' ' Euler angles, α β γ cos! " sin! 0 sin! cos! 0 0 0 1 # $ % % % & ' ( ( ( 1 0 0 0 cos ) " sin ) 0 sin ) cos ) # $ % % % & ' ( ( ( cos* " sin* 0 sin* cos* 0 0 0 1 # $ % % % & ' ( ( ( Order of rotations: 123 axis of rotation: z’’ x’ z cos! " sin! 0 sin! cos! 0 0 0 1 # $ % % % & ' ( ( ( cos) 0 " sin) 0 1 0 sin) 0 cos) # $ % % % & ' ( ( ( cos* " sin* 0 sin* cos* 0 0 0 1 # $ % % % & ' ( ( ( cos) 0 sin) 0 1 0 " sin) 0 cos) # $ % % % & ' ( ( ( cos! sin! 0 " sin! cos! 0 0 0 1 # $ % % % & ' ( ( ( 123 z’’ -z-y’y’’’z’’’’ 45 Polar angles, φψκ 3D rotation conventions: Net rotation = κ, around an axis axis defined by φ and ψ Each rotation is around a principle axis. Polar angles z = north pole x = prime meridean @ equator y ψ φ κ Rotation of κ degrees around an axis axis located at φ degrees longitude and ψ degrees latitude Special properties of rotation matrices Read more about rotation matrices at: http://mathworld.wolfram.com/RotationMatrix.html •They are square, 2x2 or 3x3(higher dimensions in principle) •The product of any two rotation matrices is a rotation matrix. •The inverse equals the transpose, R-1 = RT •Every row/column is a unit vector. •Any two rows/columns are orthogonal vectors. •The cross-product of any two rows equals the third. •|x| = |Rx|, where R is a rotation matrix. Least squares superposition Mxi + v ! yi 2 i " Problem: find the rotation matrix, M, and a vector, v, that minimize the following quantity: Where xi are the coordinates from one molecule and yi are the equivalent* coordinates from another molecule. *equivalent based on alignment Mapping structural equivalence = aligning the sequence 4DFR:A ISLIAALAVDRVIGMENAMPWNLPADLAWFKRNTLDKPVIMGRHTWESIG-RPLPGRKNI 1DFR:_ TAFLWAQNRNGLIGKDGHLPWHLPDDLHYFRAQTVGKIMVVGRRTYESFPKRPLPERTNV 4DFR:A ILSSQ-PGTDDRVTWVKSVDEAIAAC--GDVPEIMVIGGGRVYEQFLPKAQKLYLTHIDA 1DFR:_ VLTHQEDYQAQGAVVVHDVAAVFAYAKQHLDQELVIAGGAQIFTAFKDDVDTLLVTRLAG 4DFR:A EVEGDTHFPDYEPDDWESVFSEFHDADAQNS--HSYCFKILERR 1DFR:_ SFEGDTKMIPLNWDDFTKVSSRTVEDT---NPALTHTYEVWQKK Any position that is aligned is included in the sum of squares. Unaligned positions are not. Least squares At the position of best superposition, we have an approximate equality: First we eliminate v by translating the center of mass of both molecules to the origin.Now we have: We have one equation (i) for each atom, M has 9 unknowns. Mxi + v ! yi Mx' i ! y' i If there are more equations than unknowns, there is a unique solution. What is it? See the next two slides. least-squares superimposed molecules In class exercise: Continue MOE Tour •start MOE (using ‘moe -gfxvisual 0x31’ if using the SGI machines) •Open the MOE Tour web page: Help-->Tutorials-- >Getting Started.. •Go through the following sections at your own pace: •Saving and Loading a Molecule File •Saving a Molecule in a Database •Rendering the Molecule •Selecting Atoms •Moving Selected Atoms •Rotating About a Bond •Introducing the Atom Manager •Measuring Angles and Distances •Measuring Energy Read Cp 6-7 for next time • Structure superposition and classification
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved