Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

CMOS Inverter Design: Static Operation and VTC Characteristics - Prof. Aurangzeb Khan, Study notes of Electrical and Electronics Engineering

A part of ee534 vlsi design system lecture notes from summer 2004. It covers the static operation of cmos inverters, including the vtc characteristics, design considerations, and impact of process variation. The document also includes equations for finding the noise margins for ideal vth.

Typology: Study notes

Pre 2010

Uploaded on 08/19/2009

koofers-user-kd1
koofers-user-kd1 🇺🇸

10 documents

1 / 7

Toggle sidebar

Related documents


Partial preview of the text

Download CMOS Inverter Design: Static Operation and VTC Characteristics - Prof. Aurangzeb Khan and more Study notes Electrical and Electronics Engineering in PDF only on Docsity! EE534 VLSI Design System Summer 2004 Lecture 06: Static CMOS inverter (CHAPTER 5) Review: CMOS Inverter VTC 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 Vin (V) V ou t (V ) NMOS off PMOS res NMOS sat PMOS res NMOS sat PMOS sat NMOS res PMOS sat NMOS res PMOS off VDD Vout CL NMOS off PMOS in non sat NMOS in sat PMOS in non sat NMOS in sat PMOS in sat NMOS in non sat PMOS in sat NMOS in nonsat PMOS off Vout = VDS D ra in c ur re nt I D S Vin=2V VCC Vin=1V Vin=3V Vin=4V Review: CMOS Inverter: VTC Vout = VDS D ra in c ur re nt I D S Vin=2V VCC Vin=1V Vin=3V Vin=4V V ou t Vin1 2 3 40 VCC PMOS NMOS • Output goes completely to Vcc and Gnd • Sharp transition region CMOS Inverter: Switch Model of Dynamic Behavior VDD Rn Vout CL Vin = V DD VDD Rp Vout CL Vin = 0 CMOS Inverter: Switch Model of Dynamic Behavior VDD Rn Vout CL Vin = V DD VDD Rp Vout CL Vin = 0 Gate response time is determined by the time to charge CL through Rp (discharge CL through Rn) CMOS inverter operation NMOS transistor: Cutoff if Vin < VTN Linear if Vout < Vin – VTN Saturated if Vout > Vin – VTN PMOS transistor Cutoff if (Vin-VCC) < VTP → Vin < Vcc+VTP Linear if (Vout-VCC)>Vin-Vcc-VTP → Vout>Vin - VTP Sat. if (Vout-VCC)<Vin-Vcc-VTP → Vout < Vin-VTP Vin Vout Vcc CMOS Static Inverter design consideration Definition of Noise Margins VIH VIL Undefined Region "1" "0" VOH VOL NMH NML Gate Output Gate Input Noise Margin High Noise Margin Low Concept of Noise Margins NML=VIL-VOL (noise margin for low input) NMH=VOH-VIH (noise margin for high input) VI ILOLILL VVVNM =−= ILIHCCIHOHH VVVVVNM =−=−= Noise margin calculations Vout = VDS D ra in c ur re nt I D S Vin=2V VCC Vin=1V Vin=3V Vin=4V CMOS inverter: VIL KCL: IDp=IDn Differentiate and set dVout/dVin to –1 Solve simultaneously with KCL to find VIL ( ) ( )[ ]2,,,0,2,0, 222 pDSpDSpTpGS p nTnGS n VVVV k VVk −−=− ( ) ( )( ) ( )[ ]2,02,0 222 CCoutCCoutpTCCin p nTin n VVVVVVV k VVk −−−−−=− ( ) ( ) ( ) ( )       −−−+−−=− in out CCoutCCout in out pTCCinpnTinn dV dVVVVV dV dVVVVkVVk ,0,0 ( ) ( )CCpTILoutpnTILn VVVVkVVk −+−=− ,0,0 2 R nTRCCpTout IL k VkVVV V + +−+ = 1 2 ,0,0 p n R k kk = CMOS inverter: VIH KCL: Differentiate and set dVout/dVin to –1 Solve simultaneously with KCL to find VIH ( )[ ] ( )2,0,2,,,0, 222 pTpGS p nDSnDSnTnGS n VV k VVVVk −=−− ( )[ ] ( )2,02,0 222 pTCCin p outoutnTin n VVV k VVVVk −−=−− ( ) ( )pTCCinp in out outout in out nTinn VVVkdV dVVV dV dVVVk ,0,0 −−=      −+− ( ) ( )pTCCIHppTIHoutn VVVkVVVk ,0,02 −−=+− ( ) R nToutRpTCC IH k VVkVV V + +++ = 1 2 ,0,0 p n R k kk = CMOS inverter: VIL and VIH for Ideal VTH (Symmetrical, Kn=Kp) Assuming VT0,n=-VT0,p, and kR = 1, ( )0238 1 TCCIL VVV += ( )0258 1 TCCIH VVV −= DDIHIL VVV =+ ILOLILL VVVNM =−= ILIHCCIHOHH VVVVVNM =−=−= (symmetrical inverter) Example 5.4 CMOS inverter: VTH KCL: Solve for VTH = Vin = Vout ( ) ( )2,0,2,0, 22 pTpGS p nTnGS n VV k VVk −=− ( ) ( )2,02,0 22 pTCCin p nTin n VVV k VVk −−=− ( ) R pTCC R nT TH k VV k V V 11 1 ,0,0 + ++ = p n R k kk = CMOS inverter: Ideal VTH (Symmetrical, Kn=Kp) Ideally, Vth = VCC/2 Assuming VT0,n = VT0,p, ( ) R pTCC R nT TH k VV k V V 11 1 ,0,0 + ++ = p n R k kk = 2 ,0 ,0 , 2 2       + + = nTCC pTCC idealR VV VV k 1, =idealRk 5.2≈=             p n n p L W L W µ µ nn L W L W      ≈      5.2⇒ For ideal symmetrical inverter required that
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved