Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Trigonometric Integrals: Solving Integrals with Combinations of Trigonometric Functions - , Study notes of Mathematics

A goal and methods for solving integrals whose integrands are combinations of trigonometric functions. It includes some useful trigonometric identities and examples of how to evaluate integrals of the form sin(mx) cos(nx)dx and cos(mx)dx. It also covers integrals of tangents and secants.

Typology: Study notes

2009/2010

Uploaded on 03/28/2010

koofers-user-4jw
koofers-user-4jw 🇺🇸

10 documents

1 / 61

Toggle sidebar

Related documents


Partial preview of the text

Download Trigonometric Integrals: Solving Integrals with Combinations of Trigonometric Functions - and more Study notes Mathematics in PDF only on Docsity! Math 104-003, Fall 2009 Tong Zhu Department of Mathematics University of Pennsylvania September 23, 2009 Tong Zhu Math 104-003, Fall 2009 Trigonometric Integrals Goal: to solve integrals whose integrands are combinations of trigonometric functions. For example,∫ sin4 x cos xdx ∫ sin2 x cos3 xdx∫ sin5 xdx ∫ sin(4x) cos(5x)dx or ∫ tan3 x sec2 xdx ∫ tan3 xdx Methods: We will need I Techniques of Integration: substitution, integral by parts I Trigonometric Identities Tong Zhu Math 104-003, Fall 2009 Trigonometric Integrals Goal: to solve integrals whose integrands are combinations of trigonometric functions. For example,∫ sin4 x cos xdx ∫ sin2 x cos3 xdx∫ sin5 xdx ∫ sin(4x) cos(5x)dx or ∫ tan3 x sec2 xdx ∫ tan3 xdx Methods: We will need I Techniques of Integration: substitution, integral by parts I Trigonometric Identities Tong Zhu Math 104-003, Fall 2009 Trigonometric Integrals Goal: to solve integrals whose integrands are combinations of trigonometric functions. For example,∫ sin4 x cos xdx ∫ sin2 x cos3 xdx∫ sin5 xdx ∫ sin(4x) cos(5x)dx or ∫ tan3 x sec2 xdx ∫ tan3 xdx Methods: We will need I Techniques of Integration: substitution, integral by parts I Trigonometric Identities Tong Zhu Math 104-003, Fall 2009 Trigonometric Integrals Goal: to solve integrals whose integrands are combinations of trigonometric functions. For example,∫ sin4 x cos xdx ∫ sin2 x cos3 xdx∫ sin5 xdx ∫ sin(4x) cos(5x)dx or ∫ tan3 x sec2 xdx ∫ tan3 xdx Methods: We will need I Techniques of Integration: substitution, integral by parts I Trigonometric Identities Tong Zhu Math 104-003, Fall 2009 Some useful trigonometric identities: 1. sin2 x + cos2 x = 1⇒ sin2 x = 1− cos2 x , cos2 x = 1− sin2 x 2. cos(2x) = cos2 x − sin2 x ⇒ sin2 x = 1 2 (1− cos 2x), cos2 x = 1 2 (1 + cos 2x) 3. sin 2x = 2 sin x cos x 4. sec2 x = 1 + tan2 x ⇒ tan2 x = sec2 x − 1 Tong Zhu Math 104-003, Fall 2009 Some useful trigonometric identities: 1. sin2 x + cos2 x = 1⇒ sin2 x = 1− cos2 x , cos2 x = 1− sin2 x 2. cos(2x) = cos2 x − sin2 x ⇒ sin2 x = 1 2 (1− cos 2x), cos2 x = 1 2 (1 + cos 2x) 3. sin 2x = 2 sin x cos x 4. sec2 x = 1 + tan2 x ⇒ tan2 x = sec2 x − 1 Tong Zhu Math 104-003, Fall 2009 Some useful trigonometric identities: 1. sin2 x + cos2 x = 1⇒ sin2 x = 1− cos2 x , cos2 x = 1− sin2 x 2. cos(2x) = cos2 x − sin2 x ⇒ sin2 x = 1 2 (1− cos 2x), cos2 x = 1 2 (1 + cos 2x) 3. sin 2x = 2 sin x cos x 4. sec2 x = 1 + tan2 x ⇒ tan2 x = sec2 x − 1 Tong Zhu Math 104-003, Fall 2009 Example 1 Evaluate ∫ sin4 x cos xdx Solution: Let u = sin x ⇒ du = cos xdx .∫ sin4 x cos xdx = ∫ u4du = 1 5 u5 + C = 1 5 sin5 x + C Tong Zhu Math 104-003, Fall 2009 Example 1 Evaluate ∫ sin4 x cos xdx Solution: Let u = sin x ⇒ du = cos xdx .∫ sin4 x cos xdx = ∫ u4du = 1 5 u5 + C = 1 5 sin5 x + C Tong Zhu Math 104-003, Fall 2009 Example 1 Evaluate ∫ sin4 x cos xdx Solution: Let u = sin x ⇒ du = cos xdx .∫ sin4 x cos xdx = ∫ u4du = 1 5 u5 + C = 1 5 sin5 x + C Tong Zhu Math 104-003, Fall 2009 Example 1 Evaluate ∫ sin4 x cos xdx Solution: Let u = sin x ⇒ du = cos xdx .∫ sin4 x cos xdx = ∫ u4du = 1 5 u5 + C = 1 5 sin5 x + C Tong Zhu Math 104-003, Fall 2009 Example 2 Evaluate ∫ sin3 x cos2 xdx Solution: Still need substitution. But before substitution, write the integral as ∫ sin3 x cos2 xdx = ∫ sin2 x cos2 x sin xdx = ∫ (1−cos2 x) cos2 x sin xdx Let u = cos x ⇒ du = − sin xdx . ∫ (1− cos2 x) cos2 x sin xdx = ∫ (1− u2)u2(−du) = − ∫ [u2 − u4]du = −[1 3 u3 − 1 5 u5] + C = −1 3 cos3 x + 1 5 cos5 x + C Tong Zhu Math 104-003, Fall 2009 Example 2 Evaluate ∫ sin3 x cos2 xdx Solution: Still need substitution. But before substitution, write the integral as ∫ sin3 x cos2 xdx = ∫ sin2 x cos2 x sin xdx = ∫ (1−cos2 x) cos2 x sin xdx Let u = cos x ⇒ du = − sin xdx . ∫ (1− cos2 x) cos2 x sin xdx = ∫ (1− u2)u2(−du) = − ∫ [u2 − u4]du = −[1 3 u3 − 1 5 u5] + C = −1 3 cos3 x + 1 5 cos5 x + C Tong Zhu Math 104-003, Fall 2009 Example 2 Evaluate ∫ sin3 x cos2 xdx Solution: Still need substitution. But before substitution, write the integral as ∫ sin3 x cos2 xdx = ∫ sin2 x cos2 x sin xdx = ∫ (1−cos2 x) cos2 x sin xdx Let u = cos x ⇒ du = − sin xdx . ∫ (1− cos2 x) cos2 x sin xdx = ∫ (1− u2)u2(−du) = − ∫ [u2 − u4]du = −[1 3 u3 − 1 5 u5] + C = −1 3 cos3 x + 1 5 cos5 x + C Tong Zhu Math 104-003, Fall 2009 Example 3 Evaluate ∫ cos4 xdx Solution: Write the integral as∫ cos4 xdx = ∫ [cos2 x ]2dx = ∫ [ 1 2 (1 + cos 2x)]2dx = 1 4 ∫ (1 + 2 cos 2x + cos2 2x)dx = 1 4 [x + 2 · 1 2 sin 2x + ∫ 1 2 (1 + cos 4x)dx ] = 1 4 [x + sin 2x + 1 2 (x + 1 4 sin 4x)] + C = 1 4 [ 3 2 x + sin 2x + 1 8 sin 4x ] + C Tong Zhu Math 104-003, Fall 2009 Example 3 Evaluate ∫ cos4 xdx Solution: Write the integral as∫ cos4 xdx = ∫ [cos2 x ]2dx = ∫ [ 1 2 (1 + cos 2x)]2dx = 1 4 ∫ (1 + 2 cos 2x + cos2 2x)dx = 1 4 [x + 2 · 1 2 sin 2x + ∫ 1 2 (1 + cos 4x)dx ] = 1 4 [x + sin 2x + 1 2 (x + 1 4 sin 4x)] + C = 1 4 [ 3 2 x + sin 2x + 1 8 sin 4x ] + C Tong Zhu Math 104-003, Fall 2009 Example 4 Evaluate ∫ sin2 x cos2 xdx Solution 1 :∫ sin2 x cos2 xdx = ∫ 1 2 (1− cos 2x)1 2 (1 + cos 2x)dx = 1 4 ∫ (1− cos2 2x)dx = 1 4 ∫ [1− 1 2 (1 + cos 4x)]dx = 1 4 [x − 1 2 (x + 1 4 sin 4x)] + C = 1 4 [ 1 2 x − 1 8 sin 4x ] + C = 1 8 x − 1 32 sin 4x + C Tong Zhu Math 104-003, Fall 2009 Solution 2 : ∫ sin2 x cos2 xdx = ∫ 1 4 (2 sin x cos x)2dx = 1 4 ∫ sin2 2xdx = 1 4 ∫ 1 2 (1− cos 4x)dx = 1 8 (1− 1 4 sin 4x) + C = 1 8 x − 1 32 sin 4x + C Tong Zhu Math 104-003, Fall 2009 Solution 2 : ∫ sin2 x cos2 xdx = ∫ 1 4 (2 sin x cos x)2dx = 1 4 ∫ sin2 2xdx = 1 4 ∫ 1 2 (1− cos 4x)dx = 1 8 (1− 1 4 sin 4x) + C = 1 8 x − 1 32 sin 4x + C Tong Zhu Math 104-003, Fall 2009 Case 2 If m is odd, say m = 2k + 1, use sin2 x = 1− cos2 x . Let u = cos x ⇒ du = − sin xdx .∫ sin2k+1 x cosn xdx = ∫ (sin2 x)k cosn x sin xdx = ∫ (1− cos2 x)k cosn x sin xdx = − ∫ (1− u2)kundu Case 3 If both m and n are odd, either Case 1 or Case 2 can be applied. Tong Zhu Math 104-003, Fall 2009 Case 2 If m is odd, say m = 2k + 1, use sin2 x = 1− cos2 x . Let u = cos x ⇒ du = − sin xdx .∫ sin2k+1 x cosn xdx = ∫ (sin2 x)k cosn x sin xdx = ∫ (1− cos2 x)k cosn x sin xdx = − ∫ (1− u2)kundu Case 3 If both m and n are odd, either Case 1 or Case 2 can be applied. Tong Zhu Math 104-003, Fall 2009 Case 4 If both m and n are even, apply sin2 x = 1 2 (1− cos 2x), cos2 x = 1 2 (1 + cos 2x) Sometimes, sin 2x = 2 sin x cos x is useful too. Tong Zhu Math 104-003, Fall 2009 Integrals of Tangents and Secants ∫ tan xdx = ∫ sin x cos x dx = ∫ −1 u du = − ln |u|+C = − ln | cos x |+C (substitution u = cos x) Similarly, ∫ cot xdx = ln | sin x |+ C ∫ sec xdx = ∫ sec x(tan x + sec x) tan x + sec x dx = ∫ sec x tan x + sec2 x tan x + sec x dx Let u = tan x + sec x ⇒ du = (sec2 x + sec x tan x)dx . Tong Zhu Math 104-003, Fall 2009 Integrals of Tangents and Secants ∫ tan xdx = ∫ sin x cos x dx = ∫ −1 u du = − ln |u|+C = − ln | cos x |+C (substitution u = cos x) Similarly, ∫ cot xdx = ln | sin x |+ C ∫ sec xdx = ∫ sec x(tan x + sec x) tan x + sec x dx = ∫ sec x tan x + sec2 x tan x + sec x dx Let u = tan x + sec x ⇒ du = (sec2 x + sec x tan x)dx . Tong Zhu Math 104-003, Fall 2009 Integrals of Tangents and Secants ∫ tan xdx = ∫ sin x cos x dx = ∫ −1 u du = − ln |u|+C = − ln | cos x |+C (substitution u = cos x) Similarly, ∫ cot xdx = ln | sin x |+ C ∫ sec xdx = ∫ sec x(tan x + sec x) tan x + sec x dx = ∫ sec x tan x + sec2 x tan x + sec x dx Let u = tan x + sec x ⇒ du = (sec2 x + sec x tan x)dx . Tong Zhu Math 104-003, Fall 2009 Integrals of Tangents and Secants ∫ tan xdx = ∫ sin x cos x dx = ∫ −1 u du = − ln |u|+C = − ln | cos x |+C (substitution u = cos x) Similarly, ∫ cot xdx = ln | sin x |+ C ∫ sec xdx = ∫ sec x(tan x + sec x) tan x + sec x dx = ∫ sec x tan x + sec2 x tan x + sec x dx Let u = tan x + sec x ⇒ du = (sec2 x + sec x tan x)dx . Tong Zhu Math 104-003, Fall 2009 Integrals of Tangents and Secants ∫ tan xdx = ∫ sin x cos x dx = ∫ −1 u du = − ln |u|+C = − ln | cos x |+C (substitution u = cos x) Similarly, ∫ cot xdx = ln | sin x |+ C ∫ sec xdx = ∫ sec x(tan x + sec x) tan x + sec x dx = ∫ sec x tan x + sec2 x tan x + sec x dx Let u = tan x + sec x ⇒ du = (sec2 x + sec x tan x)dx . Tong Zhu Math 104-003, Fall 2009 Integrals of Tangents and Secants ∫ tan xdx = ∫ sin x cos x dx = ∫ −1 u du = − ln |u|+C = − ln | cos x |+C (substitution u = cos x) Similarly, ∫ cot xdx = ln | sin x |+ C ∫ sec xdx = ∫ sec x(tan x + sec x) tan x + sec x dx = ∫ sec x tan x + sec2 x tan x + sec x dx Let u = tan x + sec x ⇒ du = (sec2 x + sec x tan x)dx . Tong Zhu Math 104-003, Fall 2009 So ∫ sec xdx = ∫ 1 udu = ln |u|+ C = ln | tan x + sec x |+ C . Similarly, ∫ csc xdx = − ln | csc x + cot x |+ C . Generally, an integral of the form ∫ tanm x secn xdx can be computed in the following way: 1. If m is odd, apply tan2 x = sec2 x − 1 and let u = sec x ⇒ du = sec x tan xdx 2. If n is even, apply sec2 x = 1 + tan2 x and let u = tan x ⇒ du = sec2 xdx 3. For other cases, there is no clear-cut guideline. For example,∫ tan xdx and ∫ sec xdx . Tong Zhu Math 104-003, Fall 2009 So ∫ sec xdx = ∫ 1 udu = ln |u|+ C = ln | tan x + sec x |+ C . Similarly, ∫ csc xdx = − ln | csc x + cot x |+ C . Generally, an integral of the form ∫ tanm x secn xdx can be computed in the following way: 1. If m is odd, apply tan2 x = sec2 x − 1 and let u = sec x ⇒ du = sec x tan xdx 2. If n is even, apply sec2 x = 1 + tan2 x and let u = tan x ⇒ du = sec2 xdx 3. For other cases, there is no clear-cut guideline. For example,∫ tan xdx and ∫ sec xdx . Tong Zhu Math 104-003, Fall 2009 So ∫ sec xdx = ∫ 1 udu = ln |u|+ C = ln | tan x + sec x |+ C . Similarly, ∫ csc xdx = − ln | csc x + cot x |+ C . Generally, an integral of the form ∫ tanm x secn xdx can be computed in the following way: 1. If m is odd, apply tan2 x = sec2 x − 1 and let u = sec x ⇒ du = sec x tan xdx 2. If n is even, apply sec2 x = 1 + tan2 x and let u = tan x ⇒ du = sec2 xdx 3. For other cases, there is no clear-cut guideline. For example,∫ tan xdx and ∫ sec xdx . Tong Zhu Math 104-003, Fall 2009 Example 5 Evaluate ∫ tan3 x sec2 xdx Solution 1 : Let u = sec x ⇒ du = sec x tan xdx .∫ tan3 x sec2 xdx = ∫ tan2 x sec x tan x sec xdx = ∫ (u2 − 1)udu = ∫ (u3 − u)du = 1 4 u4 − 1 2 u2 + C = 1 4 sec4 x − 1 2 sec2 x + C Tong Zhu Math 104-003, Fall 2009 Example 5 Evaluate ∫ tan3 x sec2 xdx Solution 1 : Let u = sec x ⇒ du = sec x tan xdx . ∫ tan3 x sec2 xdx = ∫ tan2 x sec x tan x sec xdx = ∫ (u2 − 1)udu = ∫ (u3 − u)du = 1 4 u4 − 1 2 u2 + C = 1 4 sec4 x − 1 2 sec2 x + C Tong Zhu Math 104-003, Fall 2009 Example 5 Evaluate ∫ tan3 x sec2 xdx Solution 1 : Let u = sec x ⇒ du = sec x tan xdx .∫ tan3 x sec2 xdx = ∫ tan2 x sec x tan x sec xdx = ∫ (u2 − 1)udu = ∫ (u3 − u)du = 1 4 u4 − 1 2 u2 + C = 1 4 sec4 x − 1 2 sec2 x + C Tong Zhu Math 104-003, Fall 2009 Solution 2 : Let u = tan x ⇒ du = sec2 xdx .∫ tan3 x sec2 xdx = ∫ u3du = 1 4 u4 + C = 1 4 tan4 x + C Why are these two answers different? 1 4 tan4 x = 1 4 (sec2 x − 1)2 = 1 4 (sec4 x − 2 sec2 x + 1) = 1 4 sec4 x − 1 2 sec2 x + 1 4 So the two answers are the same! Tong Zhu Math 104-003, Fall 2009 Solution 2 : Let u = tan x ⇒ du = sec2 xdx .∫ tan3 x sec2 xdx = ∫ u3du = 1 4 u4 + C = 1 4 tan4 x + C Why are these two answers different? 1 4 tan4 x = 1 4 (sec2 x − 1)2 = 1 4 (sec4 x − 2 sec2 x + 1) = 1 4 sec4 x − 1 2 sec2 x + 1 4 So the two answers are the same! Tong Zhu Math 104-003, Fall 2009
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved