Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Lectures on Electromagnetic Field Theory, Lecture notes of Quantum Mechanics

Lectures on Electromagnetic Field Theory taught by Weng Cho Chew in Spring 2020 at Purdue University. The lectures cover topics such as waves in gyrotropic media, polarization, spin angular momentum, complex Poynting's theorem, transmission lines, Smith chart, VSWR, multi-junction transmission lines, duality principle, reflection, transmission, and interesting physical phenomena. a comprehensive resource for students studying Electromagnetic Field Theory.

Typology: Lecture notes

2019/2020

Uploaded on 05/11/2023

ekavir
ekavir 🇺🇸

4.3

(31)

16 documents

Partial preview of the text

Download Lectures on Electromagnetic Field Theory and more Lecture notes Quantum Mechanics in PDF only on Docsity! Lectures on Electromagnetic Field Theory Weng Cho CHEW1 Spring 2020, Purdue University 1Updated: April 24, 2020 Contents iii 9 Waves in Gyrotropic Media, Polarization 81 9.1 Gyrotropic Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9.2 Wave Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.2.1 Arbitrary Polarization Case and Axial Ratio . . . . . . . . . . . . . . 86 9.3 Polarization and Power Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10 Spin Angular Momentum, Complex Poynting’s Theorem, Lossless Condi- tion, Energy Density 91 10.1 Spin Angular Momentum and Cylindrical Vector Beam . . . . . . . . . . . . 91 10.2 Complex Poynting’s Theorem and Lossless Conditions . . . . . . . . . . . . . 93 10.2.1 Complex Poynting’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 93 10.2.2 Lossless Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 10.3 Energy Density in Dispersive Media . . . . . . . . . . . . . . . . . . . . . . . 95 11 Transmission Lines 99 11.1 Transmission Line Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 11.1.1 Time-Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11.1.2 Frequency-Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . 103 11.2 Lossy Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 12 More on Transmission Lines 109 12.1 Terminated Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 109 12.1.1 Shorted Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 12.1.2 Open terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 12.2 Smith Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 12.3 VSWR (Voltage Standing Wave Ratio) . . . . . . . . . . . . . . . . . . . . . . 116 13 Multi-Junction Transmission Lines, Duality Principle 121 13.1 Multi-Junction Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . 121 13.1.1 Single-Junction Transmission Lines . . . . . . . . . . . . . . . . . . . . 122 13.1.2 Two-Junction Transmission Lines . . . . . . . . . . . . . . . . . . . . . 124 13.1.3 Stray Capacitance and Inductance . . . . . . . . . . . . . . . . . . . . 127 13.2 Duality Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 13.2.1 Unusual Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 13.2.2 Fictitious Magnetic Currents . . . . . . . . . . . . . . . . . . . . . . . 129 14 Reflection, Transmission, and Interesting Physical Phenomena 131 14.1 Reflection and Transmission—Single Interface Case . . . . . . . . . . . . . . . 131 14.1.1 TE Polarization (Perpendicular or E Polarization)1 . . . . . . . . . . . 132 14.1.2 TM Polarization (Parallel or H Polarization) . . . . . . . . . . . . . . 134 14.2 Interesting Physical Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . 135 14.2.1 Total Internal Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 135 1These polarizations are also variously know as the s and p polarizations, a descendent from the notations for acoustic waves where s and p stand for shear and pressure waves respectively. iv Electromagnetic Field Theory 15 More on Interesting Physical Phenomena 141 15.1 More on Interesting Physical Phenomena, Homomorphism, Plane Waves, Trans- mission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 15.1.1 Brewster Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 15.1.2 Surface Plasmon Polariton . . . . . . . . . . . . . . . . . . . . . . . . . 144 15.2 Homomorphism of Uniform Plane Waves and Transmission Lines Equations . 146 15.2.1 TE or TEz Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 15.2.2 TM or TMz Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 16 Waves in Layered Media 149 16.1 Waves in Layered Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 16.1.1 Generalized Reflection Coefficient for Layered Media . . . . . . . . . . 150 16.2 Phase Velocity and Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . 151 16.2.1 Phase Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 16.2.2 Group Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 16.3 Wave Guidance in a Layered Media . . . . . . . . . . . . . . . . . . . . . . . . 155 16.3.1 Transverse Resonance Condition . . . . . . . . . . . . . . . . . . . . . 155 17 Dielectric Waveguides 157 17.1 Generalized Transverse Resonance Condition . . . . . . . . . . . . . . . . . . 157 17.2 Dielectric Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 17.2.1 TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 17.2.2 TM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 17.2.3 A Note on Cut-Off of Dielectric Waveguides . . . . . . . . . . . . . . . 165 18 Hollow Waveguides 167 18.1 Hollow Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 18.1.1 Absence of TEM Mode in a Hollow Waveguide . . . . . . . . . . . . . 168 18.1.2 TE Case (Ez = 0, Hz 6= 0) . . . . . . . . . . . . . . . . . . . . . . . . 169 18.1.3 TM Case (Ez 6= 0, Hz = 0) . . . . . . . . . . . . . . . . . . . . . . . . 171 18.2 Rectangular Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 18.2.1 TE Modes (H Mode or Hz 6= 0 Mode) . . . . . . . . . . . . . . . . . . 172 19 More on Hollow Waveguides 175 19.1 Rectangular Waveguides, Contd. . . . . . . . . . . . . . . . . . . . . . . . . . 175 19.1.1 TM Modes (E Modes or Ez 6= 0 Modes) . . . . . . . . . . . . . . . . . 175 19.1.2 Bouncing Wave Picture . . . . . . . . . . . . . . . . . . . . . . . . . . 176 19.1.3 Field Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 19.2 Circular Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 19.2.1 TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 19.2.2 TM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Contents v 20 More on Waveguides and Transmission Lines 185 20.1 Circular Waveguides, Contd. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 20.1.1 An Application of Circular Waveguide . . . . . . . . . . . . . . . . . . 186 20.2 Remarks on Quasi-TEM Modes, Hybrid Modes, and Surface Plasmonic Modes 189 20.2.1 Quasi-TEM Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 20.2.2 Hybrid Modes–Inhomogeneously-Filled Waveguides . . . . . . . . . . . 190 20.2.3 Guidance of Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 20.3 Homomorphism of Waveguides and Transmission Lines . . . . . . . . . . . . . 192 20.3.1 TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 20.3.2 TM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 20.3.3 Mode Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 21 Resonators 197 21.1 Cavity Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 21.1.1 Transmission Line Model . . . . . . . . . . . . . . . . . . . . . . . . . 197 21.1.2 Cylindrical Waveguide Resonators . . . . . . . . . . . . . . . . . . . . 199 21.2 Some Applications of Resonators . . . . . . . . . . . . . . . . . . . . . . . . . 203 21.2.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 21.2.2 Electromagnetic Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 205 21.2.3 Frequency Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 22 Quality Factor of Cavities, Mode Orthogonality 209 22.1 The Quality Factor of a Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . 209 22.1.1 General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 22.1.2 Relation to the Pole Location . . . . . . . . . . . . . . . . . . . . . . . 210 22.1.3 Some Formulas for Q for a Metallic Cavity . . . . . . . . . . . . . . . 212 22.1.4 Example: The Q of TM110 Mode . . . . . . . . . . . . . . . . . . . . . 213 22.2 Mode Orthogonality and Matrix Eigenvalue Problem . . . . . . . . . . . . . . 214 22.2.1 Matrix Eigenvalue Problem (EVP) . . . . . . . . . . . . . . . . . . . . 214 22.2.2 Homomorphism with the Waveguide Mode Problem . . . . . . . . . . 215 22.2.3 Proof of Orthogonality of Waveguide Modes . . . . . . . . . . . . . . . 216 23 Scalar and Vector Potentials 219 23.1 Scalar and Vector Potentials for Time-Harmonic Fields . . . . . . . . . . . . . 219 23.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 23.1.2 Scalar and Vector Potentials for Statics, A Review . . . . . . . . . . . 219 23.1.3 Scalar and Vector Potentials for Electrodynamics . . . . . . . . . . . . 220 23.1.4 More on Scalar and Vector Potentials . . . . . . . . . . . . . . . . . . 222 23.2 When is Static Electromagnetic Theory Valid? . . . . . . . . . . . . . . . . . 223 23.2.1 Quasi-Static Electromagnetic Theory . . . . . . . . . . . . . . . . . . . 228 24 Circuit Theory Revisited 229 24.1 Circuit Theory Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 24.1.1 Kirchhoff Current Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 24.1.2 Kirchhoff Voltage Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 viii Electromagnetic Field Theory 34.2.1 Optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 34.2.2 Mie Scattering by Spherical Harmonic Expansions . . . . . . . . . . . 341 34.2.3 Separation of Variables in Spherical Coordinates . . . . . . . . . . . . 341 35 Spectral Expansions of Source Fields 343 35.1 Spectral Representations of Sources . . . . . . . . . . . . . . . . . . . . . . . . 343 35.1.1 A Point Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 35.2 A Source on Top of a Layered Medium . . . . . . . . . . . . . . . . . . . . . . 348 35.2.1 Electric Dipole Fields–Spectral Expansion . . . . . . . . . . . . . . . . 349 35.3 Stationary Phase Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 35.4 Riemann Sheets and Branch Cuts . . . . . . . . . . . . . . . . . . . . . . . . . 355 35.5 Some Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 36 Computational Electromagnetics, Numerical Methods 357 36.1 Computational Electromagnetics and Numerical Methods . . . . . . . . . . . 358 36.1.1 Examples of Differential Equations . . . . . . . . . . . . . . . . . . . . 358 36.1.2 Examples of Integral Equations . . . . . . . . . . . . . . . . . . . . . . 359 36.1.3 Surface Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . 359 36.1.4 Function as a Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 36.1.5 Operator as a Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 36.1.6 Approximating Operator Equations with Matrix Equations . . . . . . 364 36.2 Subspace Projection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 36.2.1 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 36.2.2 Differential Equation Solvers versus Integral Equation Solvers . . . . . 366 36.3 Solving Matrix Equation by Optimization . . . . . . . . . . . . . . . . . . . . 367 36.3.1 Gradient of a Functional . . . . . . . . . . . . . . . . . . . . . . . . . . 368 37 Finite Difference Method, Yee Algorithm 371 37.1 Finite-Difference Time-Domain Method . . . . . . . . . . . . . . . . . . . . . 371 37.1.1 The Finite-Difference Approximation . . . . . . . . . . . . . . . . . . . 372 37.1.2 Time Stepping or Time Marching . . . . . . . . . . . . . . . . . . . . . 374 37.1.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 37.1.4 Grid-Dispersion Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 37.2 The Yee Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 37.2.1 Finite-Difference Frequency Domain Method . . . . . . . . . . . . . . 383 37.3 Absorbing Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 383 38 Quantum Theory of Light 387 38.1 Historical Background on Quantum Theory . . . . . . . . . . . . . . . . . . . 387 38.2 Connecting Electromagnetic Oscillation to Simple Pendulum . . . . . . . . . 390 38.3 Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 38.4 Schrödinger Equation (1925) . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 38.5 Some Quantum Interpretations–A Preview . . . . . . . . . . . . . . . . . . . . 399 38.5.1 Matrix or Operator Representations . . . . . . . . . . . . . . . . . . . 400 38.6 Bizarre Nature of the Photon Number States . . . . . . . . . . . . . . . . . . 401 Contents ix 39 Quantum Coherent State of Light 403 39.1 The Quantum Coherent State . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 39.1.1 Quantum Harmonic Oscillator Revisited . . . . . . . . . . . . . . . . . 404 39.2 Some Words on Quantum Randomness and Quantum Observables . . . . . . 406 39.3 Derivation of the Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . 407 39.3.1 Time Evolution of a Quantum State . . . . . . . . . . . . . . . . . . . 409 39.4 More on the Creation and Annihilation Operator . . . . . . . . . . . . . . . . 410 39.4.1 Connecting Quantum Pendulum to Electromagnetic Oscillator . . . . 412 39.5 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 x Electromagnetic Field Theory
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved