Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mathematics Quick Review Cheat Sheet, Cheat Sheet of Mathematics

Complete Mathematics cheat sheet with definitions, theories and formulas

Typology: Cheat Sheet

2019/2020
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 11/27/2020

mcboon
mcboon ๐Ÿ‡บ๐Ÿ‡ธ

4.4

(36)

28 documents

Partial preview of the text

Download Mathematics Quick Review Cheat Sheet and more Cheat Sheet Mathematics in PDF only on Docsity! Mathematics Cheat Sheet Definitions Series ๐‘“(๐‘›) = ๐‘‚(๐‘”(๐‘›)) iff โˆƒ positive ๐‘, ๐‘›0 such that 0 โ‰ค๐‘“(๐‘›) โ‰ค ๐‘๐‘”(๐‘›) โˆ€๐‘› โ‰ฅ ๐‘›0. ๐‘“(๐‘›) = ฮฉ(๐‘”(๐‘›)) iff โˆƒ positive ๐‘, ๐‘›0 such that ๐‘“(๐‘›) โ‰ฅ๐‘๐‘”(๐‘›) โ‰ฅ 0 โˆ€๐‘› โ‰ฅ ๐‘›0. ๐‘“(๐‘›) = ฮ˜(๐‘”(๐‘›)) iff ๐‘“(๐‘›) = ๐‘‚(๐‘”(๐‘›)) and ๐‘“(๐‘›) =ฮฉ(๐‘”(๐‘›)). ๐‘“(๐‘›) = ๐‘œ(๐‘”(๐‘›)) iff lim๐‘›โ†’โˆž ๐‘“(๐‘›)/๐‘”(๐‘›) = 0. lim๐‘›โ†’โˆž ๐‘Ž๐‘› = ๐‘Ž iff โˆ€๐œ– > 0, โˆƒ๐‘›0 such that |๐‘Ž๐‘› โˆ’ ๐‘Ž| < ๐œ–, โˆ€๐‘› โ‰ฅ ๐‘›0. sup ๐‘† least ๐‘ โˆˆ โ„ such that ๐‘ โ‰ฅ ๐‘ , โˆ€๐‘  โˆˆ๐‘†. inf ๐‘† greatest ๐‘ โˆˆ โ„ such that ๐‘ โ‰ค ๐‘ ,โˆ€๐‘  โˆˆ ๐‘†. lim inf๐‘›โ†’โˆž ๐‘Ž๐‘› lim๐‘›โ†’โˆž inf{๐‘Ž๐‘– โˆฃ ๐‘– โ‰ฅ ๐‘›, ๐‘– โˆˆ โ„•}. lim sup ๐‘›โ†’โˆž ๐‘Ž๐‘› lim๐‘›โ†’โˆž sup{๐‘Ž๐‘– โˆฃ ๐‘– โ‰ฅ ๐‘›, ๐‘– โˆˆ โ„•}. (๐‘›๐‘˜ ) Combinations: Size ๐‘˜ subsets of a size ๐‘› set. ๐‘› โˆ‘ ๐‘–=1 ๐‘– = ๐‘›(๐‘› + 1)2 , ๐‘› โˆ‘ ๐‘–=1 ๐‘–2 = ๐‘›(๐‘› + 1)(2๐‘› + 1)6 , ๐‘› โˆ‘ ๐‘–=1 ๐‘–3 = ๐‘› 2(๐‘› + 1)2 4 . In general: ๐‘› โˆ‘ ๐‘–=1 ๐‘–๐‘š = 1๐‘š + 1 [(๐‘› + 1) ๐‘š+1 โˆ’ 1 โˆ’ ๐‘› โˆ‘ ๐‘–=1 ((๐‘– + 1)๐‘š+1 โˆ’ ๐‘–๐‘š+1 โˆ’ (๐‘š + 1)๐‘–๐‘š)] ๐‘›โˆ’1 โˆ‘ ๐‘–=1 ๐‘–๐‘š = 1๐‘š + 1 ๐‘š โˆ‘ ๐‘˜=0 (๐‘š + 1๐‘˜ ) ๐ต๐‘˜๐‘› ๐‘š+1โˆ’๐‘˜. Geometric series: ๐‘› โˆ‘ ๐‘–=0 ๐‘๐‘– = ๐‘ ๐‘›+1 โˆ’ 1 ๐‘ โˆ’ 1 , ๐‘ โ‰  1, โˆž โˆ‘ ๐‘–=0 ๐‘๐‘– = 11 โˆ’ ๐‘ , โˆž โˆ‘ ๐‘–=1 ๐‘๐‘– = ๐‘1 โˆ’ ๐‘ , |๐‘| < 1, ๐‘› โˆ‘ ๐‘–=0 ๐‘–๐‘๐‘– = ๐‘›๐‘ ๐‘›+2 โˆ’ (๐‘› + 1)๐‘๐‘›+1 + ๐‘ (๐‘ โˆ’ 1)2 , ๐‘ โ‰  1, โˆž โˆ‘ ๐‘–=0 ๐‘–๐‘๐‘– = ๐‘(1 โˆ’ ๐‘)2 , |๐‘| < 1. Harmonic series: ๐ป๐‘› = ๐‘› โˆ‘ ๐‘–=1 1 ๐‘– , ๐‘› โˆ‘ ๐‘–=1 ๐‘–๐ป๐‘– = ๐‘›(๐‘› + 1) 2 ๐ป๐‘› โˆ’ ๐‘›(๐‘› โˆ’ 1) 4 . ๐‘› โˆ‘ ๐‘–=1 ๐ป๐‘– = (๐‘› + 1)๐ป๐‘› โˆ’ ๐‘›, ๐‘› โˆ‘ ๐‘–=1 ( ๐‘–๐‘š) ๐ป๐‘– = ( ๐‘› + 1 ๐‘š + 1) (๐ป๐‘›+1 โˆ’ 1 ๐‘š + 1) . [๐‘›๐‘˜ ] Stirling numbers (๏›œst kind): Ar- rangements of an ๐‘› element set into ๐‘˜ cycles. [๐‘›๐‘˜ ] Stirling numbers (๏˜บnd kind): Par- titions of an ๐‘› element set into ๐‘˜ non-empty sets. โŸจ๐‘›๐‘˜ โŸฉ ๏›œst order Eulerian numbers: Permutations ๐œ‹1๐œ‹2 โ€ฆ ๐œ‹๐‘› on {1, 2, โ€ฆ , ๐‘›} with ๐‘˜ ascents. โŸช๐‘›๐‘˜ โŸซ ๏˜บ nd order Eulerian numbers. ๐ถ๐‘› Catalan Numbers: Binary treeswith ๐‘› + 1 vertices. 1. (๐‘›๐‘˜ ) = ๐‘›! (๐‘› โˆ’ ๐‘˜)!๐‘˜! , 2. ๐‘› โˆ‘ ๐‘˜=0 (๐‘›๐‘˜ ) = 2 ๐‘›, 3. (๐‘›๐‘˜ ) = ( ๐‘› ๐‘› โˆ’ ๐‘˜), 4. (๐‘›๐‘˜ ) = ๐‘› ๐‘˜ ( ๐‘› โˆ’ 1 ๐‘˜ โˆ’ 1 ), 5. ( ๐‘› ๐‘˜ ) = ( ๐‘› โˆ’ 1 ๐‘˜ ) + ( ๐‘› โˆ’ 1 ๐‘˜ โˆ’ 1 ), 6. ( ๐‘›๐‘š) ( ๐‘š ๐‘˜ ) = ( ๐‘› ๐‘˜ ) ( ๐‘› โˆ’ ๐‘˜ ๐‘š โˆ’ ๐‘˜), 7. ๐‘› โˆ‘ ๐‘˜=0 (๐‘Ÿ + ๐‘˜๐‘˜ ) = ( ๐‘Ÿ + ๐‘› + 1 ๐‘› ), 8. ๐‘› โˆ‘ ๐‘˜=0 ( ๐‘˜๐‘š) = ( ๐‘› + 1 ๐‘š + 1), 9. ๐‘› โˆ‘ ๐‘˜=0 ( ๐‘Ÿ๐‘˜) ( ๐‘  ๐‘› โˆ’ ๐‘˜) = ( ๐‘Ÿ + ๐‘  ๐‘› ), 10. (๐‘›๐‘˜ ) = (โˆ’1) ๐‘˜ (๐‘˜ โˆ’ ๐‘› โˆ’ 1๐‘˜ ), 11. [ ๐‘› 1 ] = [ ๐‘› ๐‘›] = 1, 12. [ ๐‘›2] = 2 ๐‘›โˆ’1 โˆ’ 1, 13. [๐‘›๐‘˜ ] = ๐‘˜ [ ๐‘› โˆ’ 1 ๐‘˜ ] + [ ๐‘› โˆ’ 1 ๐‘˜ โˆ’ 1 ], 14. [๐‘›1 ] = (๐‘› โˆ’ 1)!, 15. [ ๐‘› 2] = (๐‘› โˆ’ 1)!๐ป๐‘›โˆ’1, 16. [ ๐‘› ๐‘›] = 1, 17. [ ๐‘› ๐‘˜ ] โ‰ฅ [ ๐‘› ๐‘˜ ], 18. [ ๐‘› ๐‘˜ ] = (๐‘› โˆ’ 1) [ ๐‘› โˆ’ 1 ๐‘˜ ] + [ ๐‘› โˆ’ 1 ๐‘˜ โˆ’ 1 ], 19. [ ๐‘›๐‘› โˆ’ 1] = [ ๐‘› ๐‘› โˆ’ 1] = ( ๐‘› 2), 20. ๐‘› โˆ‘ ๐‘˜=0 [๐‘›๐‘˜ ] = ๐‘›!, 21. ๐ถ๐‘› = 1 ๐‘› + 1 ( 2๐‘› ๐‘› ), 22. โŸจ ๐‘› 0โŸฉ = โŸจ ๐‘› ๐‘› โˆ’ 1โŸฉ = 1, 23. โŸจ๐‘›๐‘˜ โŸฉ = โŸจ ๐‘› ๐‘› โˆ’ 1 โˆ’ ๐‘˜โŸฉ, 24. โŸจ ๐‘› ๐‘˜ โŸฉ = (๐‘˜ + 1) โŸจ ๐‘› โˆ’ 1 ๐‘˜ โŸฉ + (๐‘› โˆ’ ๐‘˜) โŸจ ๐‘› โˆ’ 1 ๐‘˜ โˆ’ 1 โŸฉ, 25. โŸจ 0 ๐‘˜ โŸฉ = { 1 if k=๏˜น, 0 otherwise , 26. โŸจ๐‘›1 โŸฉ = 2 ๐‘› โˆ’ ๐‘› โˆ’ 1, 27. โŸจ ๐‘›2โŸฉ = 3 ๐‘› โˆ’ (๐‘› + 1)2๐‘› + (๐‘› + 12 ), 28. ๐‘ฅ ๐‘› = ๐‘› โˆ‘ ๐‘˜=0 โŸจ๐‘›๐‘˜ โŸฉ ( ๐‘ฅ + ๐‘˜ ๐‘› ), 29. โŸจ ๐‘›๐‘šโŸฉ = ๐‘š โˆ‘ ๐‘˜=0 (๐‘› + 1๐‘˜ ) (๐‘š + 1 โˆ’ ๐‘˜) ๐‘›(โˆ’1)๐‘˜ , 30. ๐‘š! [ ๐‘›๐‘š] = ๐‘› โˆ‘ ๐‘˜=0 โŸจ๐‘›๐‘˜ โŸฉ ( ๐‘˜ ๐‘› โˆ’ ๐‘š), 31. โŸจ ๐‘› ๐‘šโŸฉ = ๐‘› โˆ‘ ๐‘˜=0 [๐‘›๐‘˜ ] ( ๐‘› โˆ’ ๐‘˜ ๐‘š ) (โˆ’1) ๐‘›โˆ’๐‘˜โˆ’๐‘š๐‘˜!, 32. โŸช ๐‘›0โŸซ = 1, 33. โŸช ๐‘› ๐‘›โŸซ = 0 for ๐‘› โ‰  0, 34. โŸช ๐‘› ๐‘˜ โŸซ = (๐‘˜ + 1) โŸช ๐‘› โˆ’ 1 ๐‘˜ โŸซ + (2๐‘› โˆ’ 1 โˆ’ ๐‘˜) โŸช ๐‘› โˆ’ 1 ๐‘˜ โˆ’ 1 โŸซ, 35. ๐‘› โˆ‘ ๐‘˜=0 โŸช๐‘›๐‘˜ โŸซ = (2๐‘›)๐‘› 2๐‘› , 36. [ ๐‘ฅ๐‘ฅ โˆ’ ๐‘›] = ๐‘› โˆ‘ ๐‘˜=0 โŸช๐‘›๐‘˜ โŸซ ( ๐‘ฅ + ๐‘› โˆ’ 1 โˆ’ ๐‘˜ 2๐‘› ), 37. [ ๐‘› + 1 ๐‘š + 1] = โˆ‘๐‘˜ (๐‘›๐‘˜ ) [ ๐‘˜ ๐‘š] = ๐‘› โˆ‘ ๐‘˜=0 [ ๐‘˜๐‘š] (๐‘š + 1) ๐‘›โˆ’๐‘˜ , ๏›œ Mathematics Cheat Sheet Identities Cont. Trees 38. [ ๐‘› + 1๐‘š + 1] = โˆ‘๐‘˜ [๐‘›๐‘˜ ] ( ๐‘˜ ๐‘š) = ๐‘› โˆ‘ ๐‘˜=0 [ ๐‘˜๐‘š] ๐‘› ๐‘›โˆ’๐‘˜ = ๐‘›! ๐‘› โˆ‘ ๐‘˜=0 1 ๐‘˜! [ ๐‘˜ ๐‘š], 39. [ ๐‘ฅ ๐‘ฅ โˆ’ ๐‘›] = ๐‘› โˆ‘ ๐‘˜=0 โŸช๐‘›๐‘˜ โŸซ ( ๐‘ฅ + ๐‘˜ 2๐‘› ), 40. [ ๐‘›๐‘š] = โˆ‘๐‘˜ (๐‘›๐‘˜ ) [ ๐‘˜ + 1 ๐‘š + 1] (โˆ’1) ๐‘›โˆ’๐‘˜ , 41. [ ๐‘›๐‘š] = โˆ‘๐‘˜ [๐‘› + 1๐‘˜ + 1 ] ( ๐‘˜ ๐‘š) (โˆ’1) ๐‘šโˆ’๐‘˜ , 42. [๐‘š + ๐‘› + 1๐‘š ] = ๐‘š โˆ‘ ๐‘˜=0 ๐‘˜ [๐‘› + ๐‘˜๐‘˜ ], 43. [ ๐‘š + ๐‘› + 1 ๐‘š ] = ๐‘š โˆ‘ ๐‘˜=0 ๐‘˜(๐‘› + ๐‘˜) [๐‘› + ๐‘˜๐‘˜ ], 44. ( ๐‘›๐‘š) = โˆ‘๐‘˜ [๐‘› + 1๐‘˜ + 1 ] [ ๐‘˜ ๐‘š] (โˆ’1) ๐‘šโˆ’๐‘˜ , 45. (๐‘› โˆ’ ๐‘š)! ( ๐‘›๐‘š) = โˆ‘๐‘˜ [๐‘› + 1๐‘˜ + 1 ] [ ๐‘˜ ๐‘š] (โˆ’1) ๐‘šโˆ’๐‘˜ , for ๐‘› โ‰ฅ ๐‘š, 46. [ ๐‘›๐‘› โˆ’ ๐‘š] = โˆ‘๐‘˜ (๐‘š โˆ’ ๐‘›๐‘š + ๐‘˜ ) ( ๐‘š + ๐‘› ๐‘› + ๐‘˜ ) [ ๐‘š + ๐‘˜ ๐‘˜ ], 47. [ ๐‘› ๐‘› โˆ’ ๐‘š] = โˆ‘๐‘˜ (๐‘š โˆ’ ๐‘›๐‘š + ๐‘˜ ) ( ๐‘š + ๐‘› ๐‘› + ๐‘˜ ) [ ๐‘š + ๐‘˜ ๐‘˜ ], 48. [ ๐‘›โ„“ + ๐‘š] ( โ„“ + ๐‘š โ„“ ) = โˆ‘๐‘˜ [๐‘˜โ„“ ] [ ๐‘› โˆ’ ๐‘˜ ๐‘š ] ( ๐‘› ๐‘˜ ), 49. [ ๐‘› โ„“ + ๐‘š] ( โ„“ + ๐‘š โ„“ ) = โˆ‘๐‘˜ [๐‘˜โ„“ ] [ ๐‘› โˆ’ ๐‘˜ ๐‘š ] ( ๐‘› ๐‘˜ ) . Every tree with ๐‘› vertices has ๐‘› โˆ’ 1 edges. Kraft inequality: If the depths of the leaves of a binary tree are ๐‘‘1, โ€ฆ , ๐‘‘๐‘›: ๐‘› โˆ‘ ๐‘–=1 2โˆ’๐‘‘๐‘– โ‰ค 1, and equality holds only if every internal node has ๏˜บ sons. Recurrences Master method: ๐‘‡(๐‘›) = ๐‘Ž๐‘‡(๐‘›/๐‘)+๐‘“(๐‘›), ๐‘Ž โ‰ฅ 1, ๐‘ > 1 If โˆƒ๐œ– > 0 such that ๐‘“(๐‘›) = ๐‘‚(๐‘›log๐‘ ๐‘Žโˆ’๐œ–) then ๐‘‡(๐‘›) = ฮ˜(๐‘›log๐‘ ๐‘Ž). If ๐‘“(๐‘›) = ฮ˜(๐‘›log๐‘ ๐‘Ž) then ๐‘‡(๐‘›) = ฮ˜(๐‘›log๐‘ ๐‘Ž log2 ๐‘›). If โˆƒ๐œ– > 0 such that ๐‘“(๐‘›) = ฮฉ(๐‘›log๐‘ ๐‘Ž+๐œ–), and โˆƒ๐‘ < 1 such that ๐‘Ž๐‘“(๐‘›/๐‘) โ‰ค ๐‘๐‘“(๐‘›) for large ๐‘›, then ๐‘‡(๐‘›) = ฮ˜(๐‘“(๐‘›)). Substitution (example): Consider the fol- lowing recurrence ๐‘‡๐‘–+1 = 22 ๐‘– โ‹… ๐‘‡2๐‘– , ๐‘‡1 = 2. Note that ๐‘‡๐‘– is always a power of two. Let ๐‘ก๐‘– = log2 ๐‘‡๐‘–. Then we have ๐‘ก๐‘–+1 = 2๐‘– + 2๐‘ก๐‘–, ๐‘ก1 = 1. Let ๐‘ข๐‘– = ๐‘ก๐‘–/2๐‘–. Dividing both sides of the previous equation by 2๐‘–+1 we get ๐‘ก๐‘–+1 2๐‘–+1 = 2๐‘– 2๐‘–+1 + ๐‘ก๐‘– 2๐‘– . Substituting we find ๐‘ข๐‘–+1 = 1 2 + ๐‘ข๐‘–, ๐‘ข1 = 1 2 , which is simply ๐‘ข๐‘– = ๐‘–/2. So we find that ๐‘‡๐‘– has the closed form ๐‘‡๐‘– = 2๐‘–2 ๐‘–โˆ’1 . Summing factors (example): Consider the following recurrence ๐‘‡(๐‘›) = 3๐‘‡(๐‘›/2) + ๐‘›, ๐‘‡(1) = 1. Rewrite so that all terms involving ๐‘‡ are on the left side ๐‘‡(๐‘›) โˆ’ 3๐‘‡(๐‘›/2) = ๐‘›. Now expand the recurrence, and choose a factor which makes the left side โ€œtelescopeโ€ 1(๐‘‡(๐‘›) โˆ’ 3๐‘‡(๐‘›/2) = ๐‘›) 3(๐‘‡(๐‘›/2) โˆ’ 3๐‘‡(๐‘›/4) = ๐‘›/2) โ‹ฎ โ‹ฎ โ‹ฎ 3log2 ๐‘›โˆ’1(๐‘‡(2) โˆ’ 3๐‘‡(1) = 2) Let ๐‘š = log2 ๐‘›. Summing the left side we get ๐‘‡(๐‘›)โˆ’3๐‘š๐‘‡(1) = ๐‘‡(๐‘›)โˆ’3๐‘š = ๐‘‡(๐‘›)โˆ’๐‘›๐‘˜ where ๐‘˜ = log2 3 โ‰ˆ 1.58496. Summing the right side we get ๐‘šโˆ’1 โˆ‘ ๐‘–=0 ๐‘› 2๐‘– 3 ๐‘– = ๐‘› ๐‘šโˆ’1 โˆ‘ ๐‘–=0 (32) ๐‘– . Let ๐‘ = 32 . Then we have ๐‘› ๐‘šโˆ’1 โˆ‘ ๐‘–=0 ๐‘๐‘– = ๐‘› (๐‘ ๐‘š โˆ’ 1 ๐‘ โˆ’ 1 ) = 2๐‘›(๐‘ log2 ๐‘› โˆ’ 1) = 2๐‘›(๐‘(๐‘˜โˆ’1) log๐‘ ๐‘› โˆ’ 1) = 2๐‘›๐‘˜ โˆ’ 2๐‘›, and so ๐‘‡(๐‘›) = 3๐‘›๐‘˜ โˆ’ 2๐‘›. Full history recurrences can often be changed to limited history ones (ex- ample): Consider ๐‘‡๐‘– = 1 + ๐‘–โˆ’1 โˆ‘ ๐‘—=0 ๐‘‡๐‘— , ๐‘‡0 = 1. Note that ๐‘‡๐‘–+1 = 1 + ๐‘– โˆ‘ ๐‘—=0 ๐‘‡๐‘—. Subtracting we find ๐‘‡๐‘–+1 โˆ’ ๐‘‡๐‘– = 1 + ๐‘– โˆ‘ ๐‘—=0 ๐‘‡๐‘— โˆ’ 1 โˆ’ ๐‘–โˆ’1 โˆ‘ ๐‘—=0 ๐‘‡๐‘— = ๐‘‡๐‘–. And so ๐‘‡๐‘–+1 = 2๐‘‡๐‘– = 2๐‘–+1. Generating functions: ๏›œ. Multiply both sides of the equation by ๐‘ฅ๐‘–. ๏˜บ. Sum both sides over all ๐‘– for which the equation is valid. ๏˜ป. Choose a generating function ๐บ(๐‘ฅ). Usu- ally ๐บ(๐‘ฅ) = โˆ‘โˆž๐‘–=0 ๐‘ฅ๐‘–๐‘”๐‘–. ๏˜ผ. Rewrite the equation in terms of the gen- erating function ๐บ(๐‘ฅ). ๏˜ฝ. Solve for ๐บ(๐‘ฅ). ๏˜พ. The coefficient of ๐‘ฅ๐‘– in ๐บ(๐‘ฅ) is ๐‘”๐‘–. Example: ๐‘”๐‘–+1 = 2๐‘”๐‘– + 1, ๐‘”0 = 0. Multiply and sum: โˆ‘ ๐‘–โ‰ฅ0 ๐‘”๐‘–+1๐‘ฅ๐‘– = โˆ‘ ๐‘–โ‰ฅ0 2๐‘”๐‘–๐‘ฅ๐‘– + โˆ‘ ๐‘–โ‰ฅ0 ๐‘ฅ๐‘–. We choose ๐บ(๐‘ฅ) = โˆ‘๐‘–โ‰ฅ0 ๐‘ฅ๐‘–๐‘”๐‘–. Rewrite in terms of ๐บ(๐‘ฅ): ๐บ(๐‘ฅ) โˆ’ ๐‘”0 ๐‘ฅ = 2๐บ(๐‘ฅ) + โˆ‘๐‘–โ‰ฅ0 ๐‘ฅ๐‘–. Simplify: ๐บ(๐‘ฅ) ๐‘ฅ = 2๐บ(๐‘ฅ) + 1 1 โˆ’ ๐‘ฅ . Solve for ๐บ(๐‘ฅ): ๐บ(๐‘ฅ) = ๐‘ฅ(1 โˆ’ ๐‘ฅ)(1 โˆ’ 2๐‘ฅ) . Expand this using partial fractions: ๐บ(๐‘ฅ) = ๐‘ฅ ( 21 โˆ’ 2๐‘ฅ โˆ’ 1 1 โˆ’ ๐‘ฅ) = ๐‘ฅ (2 โˆ‘ ๐‘–โ‰ฅ0 2๐‘–๐‘ฅ๐‘– โˆ’ โˆ‘ ๐‘–โ‰ฅ0 ๐‘ฅ๐‘–) = โˆ‘ ๐‘–โ‰ฅ0 (2๐‘–+1 โˆ’ 1)๐‘ฅ๐‘–+1. So ๐‘”๐‘– = 2๐‘– โˆ’ 1. ๏˜บ Mathematics Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There exists a num- ber ๐ถ such that: ๐ถ โ‰ก ๐‘Ÿ1 mod ๐‘š1 โ‹ฎ โ‹ฎ โ‹ฎ ๐ถ โ‰ก ๐‘Ÿ๐‘› mod ๐‘š๐‘› if ๐‘š๐‘– and ๐‘š๐‘— are relatively prime for ๐‘– โ‰  ๐‘—. Eulerโ€™s function: ๐œ™(๐‘ฅ) is the number of positive inte- gers less than ๐‘ฅ relatively prime to ๐‘ฅ. If โˆ๐‘›๐‘–=1 ๐‘ ๐‘’๐‘–๐‘– is the prime factorization of ๐‘ฅ then ๐œ™(๐‘ฅ) = ๐‘› โˆ ๐‘–=1 ๐‘๐‘’๐‘–โˆ’1๐‘– (๐‘๐‘– โˆ’ 1). Eulerโ€™s theorem: If ๐‘Ž and ๐‘ are relatively prime then 1 โ‰ก ๐‘Ž๐œ™(๐‘) mod ๐‘. Fermatโ€™s theorem: 1 โ‰ก ๐‘Ž๐‘โˆ’1 mod ๐‘. The Euclidean algorithm: if ๐‘Ž > ๐‘ are integers then gcd(๐‘Ž, ๐‘) = gcd(๐‘Ž mod ๐‘, ๐‘). If โˆ๐‘›๐‘–=1 ๐‘ ๐‘’๐‘–๐‘– is the prime factorization of ๐‘ฅ then ๐‘†(๐‘ฅ) = โˆ‘ ๐‘‘|๐‘ฅ ๐‘‘ = ๐‘› โˆ ๐‘–=1 ๐‘๐‘’๐‘–+1๐‘– โˆ’ 1 ๐‘๐‘– โˆ’ 1 . Perfect Numbers: ๐‘ฅ is an even perfect number iff ๐‘ฅ = 2๐‘›โˆ’1(2๐‘› โˆ’ 1) and 2๐‘› โˆ’ 1 is prime. Wilsonโ€™s theorem: ๐‘› is a prime iff (๐‘› โˆ’ 1)! โ‰ก โˆ’1 mod ๐‘›. Mรถbius inversion: ๐œ‡(๐‘–) = โŽง{ โŽจ {โŽฉ 1 if ๐‘– = 1. 0 if ๐‘– is not square-free. (โˆ’1)๐‘Ÿ if ๐‘– is the product of ๐‘–๐‘Ÿ distinct primes. If ๐บ(๐‘Ž) = โˆ‘ ๐‘‘|๐‘Ž ๐น(๐‘‘), then ๐น(๐‘Ž) = โˆ‘ ๐‘‘|๐‘Ž ๐œ‡(๐‘‘)๐บ( ๐‘Ž๐‘‘ ). Prime numbers: ๐‘๐‘› = ๐‘› ln ๐‘› + ๐‘› ln ln ๐‘› โˆ’ ๐‘› + ๐‘› ln ln ๐‘› ln ๐‘› + ๐‘‚( ๐‘›ln ๐‘›), ๐œ‹(๐‘›) = ๐‘›ln ๐‘› + ๐‘› (ln ๐‘›)2 + 2!๐‘› (ln ๐‘›)3 + ๐‘‚( ๐‘›(ln ๐‘›)4 ). Definitions: Loop An edge connecting a vertex to itself. Directed Each edge has a direction. Simple Graph with no loops or multi-edges. Walk A sequence ๐‘ฃ0๐‘’1๐‘ฃ1 โ€ฆ ๐‘’โ„“๐‘ฃโ„“. Trail A walk with distinct edges. Path A trail with distinct vertices. Connected A graph where there exists a path be- tween any two vertices. Component A maximal connected subgraph. Tree A connected acyclic graph. Free tree A tree with no root. DAG Directed acyclic graph. Eulerian Graph with a trail visiting each edge ex- actly once. Hamiltonian Graph with a cycle visiting each vertex exactly once. Cut A set of edges whose removal increases the number of components. Cut-set A minimal cut. Cut edge A size ๏›œ cut. k-Connected A graph connected with the removal of any ๐‘˜ โˆ’ 1 vertices. k-Tough โˆ€๐‘† โŠ† ๐‘‰, ๐‘† โ‰  โˆ… we have ๐‘˜ โ‹… ๐‘(๐บ โˆ’ ๐‘†) โ‰ค |๐‘†|. k-Regular A graph where all vertices have degree ๐‘˜. k-Factor A ๐‘˜-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adja- cent. Vertex cover A set of vertices which cover all edges. Planar graph A graph which can be embeded in the plane. Plane graph An embedding of a planar graph. โˆ‘ ๐‘ฃโˆˆ๐‘‰ deg(๐‘ฃ) = 2๐‘š. If ๐บ is planar then ๐‘› โˆ’ ๐‘š + ๐‘“ = 2, so ๐‘“ โ‰ค 2๐‘› โˆ’ 4, ๐‘š โ‰ค 3๐‘› โˆ’ 6. Any planar graph has a vertex with degree โ‰ค 5. Notation: ๐ธ(๐บ) Edge set ๐‘‰(๐บ) Vertex set ๐‘(๐บ) Number of components ๐บ[๐‘†] Induced subgraph deg(๐‘ฃ) Degree of ๐‘ฃ ฮ”(๐บ) Maximum degree ๐›ฟ(๐บ) Minimum degree ๐œ’(๐บ) Chromatic number ๐œ’๐ธ(๐บ) Edge chromatic number ๐บ๐‘ Complement graph ๐พ๐‘› Complete graph ๐พ๐‘›1 ,๐‘›2 Complete bipartite graphr(๐‘˜, โ„“) Ramsey number Geometry Projective coordinates: triples (๐‘ฅ, ๐‘ฆ, ๐‘ง), not all ๐‘ฅ, ๐‘ฆ and ๐‘ง zero. (๐‘ฅ, ๐‘ฆ, ๐‘ง) = (๐‘๐‘ฅ, ๐‘๐‘ฆ, ๐‘๐‘ง) โˆ€๐‘ โ‰  0. Cartesian Projective (๐‘ฅ, ๐‘ฆ) (๐‘ฅ, ๐‘ฆ, 1) ๐‘ฆ = ๐‘š๐‘ฅ + ๐‘ (๐‘š, โˆ’1, ๐‘) ๐‘ฅ = ๐‘ (1, 0, โˆ’๐‘) Distance formula, ๐ฟ๐‘ and ๐ฟโˆž metric: โˆš(๐‘ฅ1 โˆ’ ๐‘ฅ0)2 + (๐‘ฆ1 โˆ’ ๐‘ฆ0)2, [|๐‘ฅ1 โˆ’ ๐‘ฅ0|๐‘ + |๐‘ฆ1 โˆ’ ๐‘ฆ0|๐‘] 1/๐‘ , lim๐‘โ†’โˆž [|๐‘ฅ1 โˆ’๐‘ฅ0| ๐‘ +|๐‘ฆ1 โˆ’๐‘ฆ0|๐‘] 1/๐‘. Area of triangle (๐‘ฅ0, ๐‘ฆ0), (๐‘ฅ1, ๐‘ฆ1) and (๐‘ฅ2, ๐‘ฆ2): 1 2 abs โˆฃ ๐‘ฅ1 โˆ’ ๐‘ฅ0 ๐‘ฆ1 โˆ’ ๐‘ฆ0 ๐‘ฅ2 โˆ’ ๐‘ฅ0 ๐‘ฆ2 โˆ’ ๐‘ฆ0โˆฃ . Angle formed by three points: (0, 0) (๐‘ฅ1, ๐‘ฆ1) (๐‘ฅ2, ๐‘ฆ2) โ„“1 โ„“2 ๐œƒ โˆ˜โˆ˜ โˆ˜ cos ๐œƒ = (๐‘ฅ1, ๐‘ฆ1) โ‹… (๐‘ฅ2, ๐‘ฆ2)โ„“1โ„“2 . Line through two points (๐‘ฅ0, ๐‘ฆ0) and (๐‘ฅ1, ๐‘ฆ1): โˆฃ ๐‘ฅ ๐‘ฆ 1 ๐‘ฅ0 ๐‘ฆ0 1 ๐‘ฅ1 ๐‘ฆ1 1 โˆฃ = 0. Area of circle, volume of sphere: ๐ด = ๐œ‹๐‘Ÿ2, ๐‘‰ = 43๐œ‹๐‘Ÿ 3. If I have seen farther than others, it is because I have stood on the shoulders of giants. โ€“ Issac Newton ๏˜ฝ Mathematics Cheat Sheet ๐œ‹ Calculus Wallisโ€™ identity: ๐œ‹ = 2 โ‹… 2 โ‹… 2 โ‹… 4 โ‹… 4 โ‹… 6 โ‹… 6 โ‹ฏ1 โ‹… 3 โ‹… 3 โ‹… 5 โ‹… 5 โ‹… 7 โ‹ฏ Brounckerโ€™s continued fraction expansion: ๐œ‹ 4 = 1 + 12 2 + 3 2 2+ 5 2 2+ 7 2 2+โ‹ฏ Gregroryโ€™s series: ๐œ‹ 4 = 1 โˆ’ 1 3 + 1 5 โˆ’ 1 7 + 1 9 โˆ’ โ‹ฏ Newtonโ€™s series: ๐œ‹ 6 = 1 2 + 1 2 โ‹… 3 โ‹… 23 + 1 โ‹… 3 2 โ‹… 4 โ‹… 5 โ‹… 25 + โ‹ฏ Sharpโ€™s series: ๐œ‹ 6 = 1 โˆš3(1 โˆ’ 1 31 โ‹… 3 + 1 32 โ‹… 5 โˆ’ 1 33 โ‹… 7 + โ‹ฏ ) Eulerโ€™s series: ๐œ‹2 6 = 1 12 + 1 22 + 1 32 + 1 42 + 1 52 + โ‹ฏ ๐œ‹2 8 = 1 12 + 1 32 + 1 52 + 1 72 + 1 92 + โ‹ฏ ๐œ‹2 12 = 1 12 โˆ’ 1 22 + 1 32 โˆ’ 1 42 + 1 52 โˆ’ โ‹ฏ Partial Fractions Let ๐‘(๐‘ฅ) and ๐ท(๐‘ฅ) be polynomial functions of ๐‘ฅ. We can break down ๐‘(๐‘ฅ)/๐ท(๐‘ฅ) using partial fraction expansion. First, if the degree of ๐‘ is greater than or equal to the degree of ๐ท, divide ๐‘ by ๐ท, obtaining ๐‘(๐‘ฅ) ๐ท(๐‘ฅ) = ๐‘„(๐‘ฅ) + ๐‘ โ€ฒ(๐‘ฅ) ๐ท(๐‘ฅ) , where the degree of๐‘ โ€ฒ is less than that of ๐ท. Second, factor ๐ท(๐‘ฅ). Use the following rules: For a non- repeated factor: ๐‘(๐‘ฅ) (๐‘ฅ โˆ’ ๐‘Ž)๐ท(๐‘ฅ) = ๐ด ๐‘ฅ โˆ’ ๐‘Ž + ๐‘ โ€ฒ(๐‘ฅ) ๐ท(๐‘ฅ) , where ๐ด = [๐‘(๐‘ฅ)๐ท(๐‘ฅ) ]๐‘ฅ=๐‘Ž . For a repeated factor: ๐‘(๐‘ฅ) (๐‘ฅ โˆ’ ๐‘Ž)๐‘š๐ท(๐‘ฅ) = ๐‘šโˆ’1 โˆ‘ ๐‘˜=0 ๐ด๐‘˜ (๐‘ฅ โˆ’ ๐‘Ž)๐‘šโˆ’๐‘˜ + ๐‘ โ€ฒ(๐‘ฅ) ๐ท(๐‘ฅ) , where ๐ด๐‘˜ = 1 ๐‘˜! [ ๐‘‘๐‘˜ ๐‘‘๐‘ฅ๐‘˜ ( ๐‘(๐‘ฅ) ๐ท(๐‘ฅ) )]๐‘ฅ=๐‘Ž . The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the un- reasonable. โ€“ George Bernard Shaw Derivatives: 1. ๐‘‘(๐‘๐‘ข) ๐‘‘๐‘ฅ = ๐‘ ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 2. ๐‘‘(๐‘ข + ๐‘ฃ) ๐‘‘๐‘ฅ = ๐‘‘๐‘ข ๐‘‘๐‘ฅ + ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ , 3. ๐‘‘(๐‘ข๐‘ฃ) ๐‘‘๐‘ฅ = ๐‘ข ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ + ๐‘ฃ ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 4. ๐‘‘(๐‘ข๐‘›) ๐‘‘๐‘ฅ = ๐‘›๐‘ข ๐‘›โˆ’1 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 5. ๐‘‘(๐‘ข/๐‘ฃ) ๐‘‘๐‘ฅ = ๐‘ฃ( ๐‘‘๐‘ข๐‘‘๐‘ฅ ) โˆ’ ๐‘ข( ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ ) ๐‘ฃ2 , 6. ๐‘‘(๐‘’๐‘๐‘ข) ๐‘‘๐‘ฅ = ๐‘๐‘’ ๐‘๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 7. ๐‘‘(๐‘๐‘ข) ๐‘‘๐‘ฅ = (ln ๐‘)๐‘ ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 8. ๐‘‘(ln ๐‘ข) ๐‘‘๐‘ฅ = 1 ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 9. ๐‘‘(sin ๐‘ข) ๐‘‘๐‘ฅ = cos ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 10. ๐‘‘(cos ๐‘ข) ๐‘‘๐‘ฅ = โˆ’ sin ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 11. ๐‘‘(tan ๐‘ข) ๐‘‘๐‘ฅ = sec 2 ๐‘ข๐‘‘๐‘ข๐‘‘๐‘ฅ , 12. ๐‘‘(cot ๐‘ข) ๐‘‘๐‘ฅ = csc 2 ๐‘ข๐‘‘๐‘ข๐‘‘๐‘ฅ , 13. ๐‘‘(sec ๐‘ข) ๐‘‘๐‘ฅ = tan ๐‘ข sec ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 14. ๐‘‘(csc ๐‘ข) ๐‘‘๐‘ฅ = โˆ’ cot ๐‘ข csc ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 15. ๐‘‘(arcsin ๐‘ข) ๐‘‘๐‘ฅ = 1 โˆš1 โˆ’ ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 16. ๐‘‘(arccos ๐‘ข) ๐‘‘๐‘ฅ = โˆ’1 โˆš1 โˆ’ ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 17. ๐‘‘(arctan ๐‘ข) ๐‘‘๐‘ฅ = 1 1 + ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 18. ๐‘‘(arccot ๐‘ข) ๐‘‘๐‘ฅ = โˆ’1 1 + ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 19. ๐‘‘(arcsec ๐‘ข) ๐‘‘๐‘ฅ = 1 ๐‘ขโˆš1 โˆ’ ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 20. ๐‘‘(arccsc ๐‘ข) ๐‘‘๐‘ฅ = โˆ’1 ๐‘ขโˆš1 โˆ’ ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 21. ๐‘‘(sinh ๐‘ข) ๐‘‘๐‘ฅ = cosh ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 22. ๐‘‘(cosh ๐‘ข) ๐‘‘๐‘ฅ = sinh ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 23. ๐‘‘(tanh ๐‘ข) ๐‘‘๐‘ฅ = sech 2 ๐‘ข๐‘‘๐‘ข๐‘‘๐‘ฅ , 24. ๐‘‘(coth ๐‘ข) ๐‘‘๐‘ฅ = โˆ’ csch 2 ๐‘ข๐‘‘๐‘ข๐‘‘๐‘ฅ , 25. ๐‘‘(sech ๐‘ข) ๐‘‘๐‘ฅ = โˆ’ sech ๐‘ข tanh ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 26. ๐‘‘(csch ๐‘ข) ๐‘‘๐‘ฅ = โˆ’ csch ๐‘ข coth ๐‘ข ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 27. ๐‘‘(arcsinh ๐‘ข) ๐‘‘๐‘ฅ = 1 โˆš1 + ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 28. ๐‘‘(arccosh ๐‘ข) ๐‘‘๐‘ฅ = 1 โˆš๐‘ข2 โˆ’ 1 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 29. ๐‘‘(arctanh ๐‘ข) ๐‘‘๐‘ฅ = 1 1 โˆ’ ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 30. ๐‘‘(arccoth ๐‘ข) ๐‘‘๐‘ฅ = 1 ๐‘ข2 โˆ’ 1 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 31. ๐‘‘(arcsech ๐‘ข) ๐‘‘๐‘ฅ = โˆ’1 ๐‘ขโˆš1 โˆ’ ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ , 32. ๐‘‘(arccsch ๐‘ข) ๐‘‘๐‘ฅ = โˆ’1 |๐‘ข|โˆš1 + ๐‘ข2 ๐‘‘๐‘ข ๐‘‘๐‘ฅ . Integrals: 1. โˆซ ๐‘๐‘ข ๐‘‘๐‘ฅ = ๐‘ โˆซ ๐‘ข ๐‘‘๐‘ฅ, 2. โˆซ(๐‘ข + ๐‘ฃ) ๐‘‘๐‘ฅ = โˆซ ๐‘ข ๐‘‘๐‘ฅ + โˆซ ๐‘ฃ ๐‘‘๐‘ฅ, 3. โˆซ ๐‘ฅ๐‘› ๐‘‘๐‘ฅ = 1๐‘› + 1๐‘ฅ ๐‘›+1, ๐‘› โ‰  โˆ’1, 4. โˆซ 1๐‘ฅ๐‘‘๐‘ฅ = ln ๐‘ฅ, 5. โˆซ ๐‘’ ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘’๐‘ฅ, 6. โˆซ ๐‘‘๐‘ฅ1 + ๐‘ฅ2 = arctan ๐‘ฅ, 7. โˆซ ๐‘ข ๐‘‘๐‘ฃ ๐‘‘๐‘ฅ๐‘‘๐‘ฅ = ๐‘ข๐‘ฃ โˆ’ โˆซ ๐‘ฃ ๐‘‘๐‘ข ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ, 8. โˆซ sin ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’ cos ๐‘ฅ, 9. โˆซ cos ๐‘ฅ ๐‘‘๐‘ฅ = sin ๐‘ฅ, 10. โˆซ tan ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’ ln | cos ๐‘ฅ|, 11. โˆซ cot ๐‘ฅ ๐‘‘๐‘ฅ = ln | cos ๐‘ฅ|, 12. โˆซ sec ๐‘ฅ ๐‘‘๐‘ฅ = ln | sec ๐‘ฅ + tan ๐‘ฅ|, 13. โˆซ csc ๐‘ฅ ๐‘‘๐‘ฅ = ln | csc ๐‘ฅ + cot ๐‘ฅ|, 14. โˆซ arcsin ๐‘ฅ๐‘Ž๐‘‘๐‘ฅ = arcsin ๐‘ฅ ๐‘Ž + โˆš๐‘Ž 2 โˆ’ ๐‘ฅ2, ๐‘Ž > 0, ๏˜พ Mathematics Cheat Sheet Calculus Cont. 15. โˆซ arccos ๐‘ฅ๐‘Ž๐‘‘๐‘ฅ = arccos ๐‘ฅ ๐‘Ž โˆ’ โˆš๐‘Ž 2 โˆ’ ๐‘ฅ2, ๐‘Ž > 0, 16. โˆซ arctan ๐‘ฅ๐‘Ž๐‘‘๐‘ฅ = ๐‘ฅ arctan ๐‘ฅ ๐‘Ž โˆ’ ๐‘Ž 2 ln(๐‘Ž 2 + ๐‘ฅ2), ๐‘Ž > 0, 17. โˆซ sin2(๐‘Ž๐‘ฅ)๐‘‘๐‘ฅ = 12๐‘Ž(๐‘Ž๐‘ฅ โˆ’ sin(๐‘Ž๐‘ฅ) cos(๐‘Ž๐‘ฅ)), 18. โˆซ cos 2(๐‘Ž๐‘ฅ)๐‘‘๐‘ฅ = 12๐‘Ž(๐‘Ž๐‘ฅ + sin(๐‘Ž๐‘ฅ) cos(๐‘Ž๐‘ฅ)), 19. โˆซ sec 2 ๐‘ฅ ๐‘‘๐‘ฅ = tan ๐‘ฅ, 20. โˆซ csc2 ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’ cot ๐‘ฅ, 21. โˆซ sin๐‘› ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’sin ๐‘›โˆ’1 ๐‘ฅ cos ๐‘ฅ ๐‘› + ๐‘› โˆ’ 1 ๐‘› โˆซ sin ๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ, 22. โˆซ cos๐‘› ๐‘ฅ ๐‘‘๐‘ฅ = cos ๐‘›โˆ’1 ๐‘ฅ sin ๐‘ฅ ๐‘› + ๐‘› โˆ’ 1 ๐‘› โˆซ cos ๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ, 23. โˆซ tan๐‘› ๐‘ฅ ๐‘‘๐‘ฅ = tan ๐‘›โˆ’1 ๐‘ฅ ๐‘› โˆ’ 1 โˆ’ โˆซ tan ๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘› โ‰  1, 24. โˆซ cot๐‘› ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’cot ๐‘›โˆ’1 ๐‘ฅ ๐‘› โˆ’ 1 โˆ’ โˆซ cot ๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘› โ‰  1, 25. โˆซ sec๐‘› ๐‘ฅ ๐‘‘๐‘ฅ = tan ๐‘ฅ sec ๐‘›โˆ’1 ๐‘ฅ ๐‘› โˆ’ 1 + ๐‘› โˆ’ 2 ๐‘› โˆ’ 1 โˆซ sec ๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘› โ‰  1, 26. โˆซ csc๐‘› ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’cot ๐‘ฅ csc ๐‘›โˆ’1 ๐‘ฅ ๐‘› โˆ’ 1 + ๐‘› โˆ’ 2 ๐‘› โˆ’ 1 โˆซ csc ๐‘›โˆ’2 ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘› โ‰  1, 27. โˆซ sinh ๐‘ฅ ๐‘‘๐‘ฅ = cosh ๐‘ฅ, 28. โˆซ cosh ๐‘ฅ ๐‘‘๐‘ฅ = sinh ๐‘ฅ, 29. โˆซ tanh ๐‘ฅ ๐‘‘๐‘ฅ = ln | cosh ๐‘ฅ|, 30. โˆซ coth ๐‘ฅ ๐‘‘๐‘ฅ = ln | sinh ๐‘ฅ|, 31. โˆซ sech ๐‘ฅ ๐‘‘๐‘ฅ = arctan sinh ๐‘ฅ, 32. โˆซ csch ๐‘ฅ ๐‘‘๐‘ฅ = ln โˆฃtanh ๐‘ฅ2 โˆฃ, 33. โˆซ sinh2 ๐‘ฅ ๐‘‘๐‘ฅ = 14 sinh(2๐‘ฅ) โˆ’ 1 2๐‘ฅ, 34. โˆซ cosh 2 ๐‘ฅ ๐‘‘๐‘ฅ = 14 sinh(2๐‘ฅ) + 1 2๐‘ฅ, 35. โˆซ sech 2 ๐‘ฅ ๐‘‘๐‘ฅ = tanh ๐‘ฅ, 36. โˆซ arcsinh ๐‘ฅ๐‘Ž๐‘‘๐‘ฅ = ๐‘ฅ arcsinh ๐‘ฅ ๐‘Ž โˆ’ โˆš๐‘ฅ 2 + ๐‘Ž2, ๐‘Ž > 0, 37. โˆซ arctanh ๐‘ฅ๐‘Ž๐‘‘๐‘ฅ = ๐‘ฅ arctanh ๐‘ฅ ๐‘Ž + ๐‘Ž 2 ln |๐‘Ž 2 โˆ’ ๐‘ฅ2|, 38. โˆซ arccosh ๐‘ฅ๐‘Ž๐‘‘๐‘ฅ = โŽง{โŽจ {โŽฉ ๐‘ฅ arccosh ๐‘ฅ๐‘Ž โˆ’ โˆš๐‘ฅ 2 + ๐‘Ž2, if arccosh ๐‘ฅ๐‘Ž > 0 and ๐‘Ž > 0, ๐‘ฅ arccosh ๐‘ฅ๐‘Ž + โˆš๐‘ฅ 2 + ๐‘Ž2, if arccosh ๐‘ฅ๐‘Ž < 0 and ๐‘Ž > 0, , 39. โˆซ ๐‘‘๐‘ฅ โˆš๐‘Ž2 + ๐‘ฅ2 = ln (๐‘ฅ + โˆš๐‘Ž2 + ๐‘ฅ2) , ๐‘Ž > 0, 40. โˆซ ๐‘‘๐‘ฅ๐‘Ž2 + ๐‘ฅ2 = 1 ๐‘Ž arctan ๐‘ฅ ๐‘Ž , ๐‘Ž > 0, 41. โˆซ โˆš๐‘Ž 2 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ = ๐‘ฅ2โˆš๐‘Ž 2 โˆ’ ๐‘ฅ2 + ๐‘Ž 2 2 arcsin ๐‘ฅ ๐‘Ž , ๐‘Ž > 0, 42. โˆซ(๐‘Ž2 โˆ’ ๐‘ฅ2)3/2๐‘‘๐‘ฅ = ๐‘ฅ8 (5๐‘Ž 2 โˆ’ 2๐‘ฅ2)โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 + 3๐‘Ž 4 8 arcsin ๐‘ฅ ๐‘Ž , ๐‘Ž > 0, 43. โˆซ ๐‘‘๐‘ฅ โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 = arcsin ๐‘ฅ๐‘Ž , ๐‘Ž > 0, 44. โˆซ ๐‘‘๐‘ฅ๐‘Ž2 โˆ’ ๐‘ฅ2 = 1 2๐‘Ž ln โˆฃ ๐‘Ž + ๐‘ฅ ๐‘Ž โˆ’ ๐‘ฅ โˆฃ, 45. โˆซ ๐‘‘๐‘ฅ (๐‘Ž2 โˆ’ ๐‘ฅ2)3/2 = ๐‘ฅ ๐‘Ž2โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 , 46. โˆซ โˆš๐‘Ž2 ยฑ ๐‘ฅ2 ๐‘‘๐‘ฅ = ๐‘ฅ2โˆš๐‘Ž 2 ยฑ ๐‘ฅ2 ยฑ ๐‘Ž 2 2 ln โˆฃ๐‘ฅ + โˆš๐‘Ž 2 ยฑ ๐‘ฅ2โˆฃ, 47. โˆซ ๐‘‘๐‘ฅ โˆš๐‘ฅ2 โˆ’ ๐‘Ž2 = ln โˆฃ๐‘ฅ + โˆš๐‘ฅ2 โˆ’ ๐‘Ž2โˆฃ , ๐‘Ž > 0, 48. โˆซ ๐‘‘๐‘ฅ๐‘Ž๐‘ฅ2 + ๐‘๐‘ฅ = 1 ๐‘Ž ln โˆฃ ๐‘ฅ ๐‘Ž + ๐‘๐‘ฅ โˆฃ, 49. โˆซ ๐‘ฅโˆš๐‘Ž + ๐‘๐‘ฅ ๐‘‘๐‘ฅ = 2(3๐‘๐‘ฅ โˆ’ 2๐‘Ž)(๐‘Ž + ๐‘๐‘ฅ)3/2 15๐‘2 , 50. โˆซ โˆš๐‘Ž + ๐‘๐‘ฅ๐‘ฅ ๐‘‘๐‘ฅ = 2โˆš๐‘Ž + ๐‘๐‘ฅ + ๐‘Ž โˆซ 1 ๐‘ฅโˆš๐‘Ž + ๐‘๐‘ฅ๐‘‘๐‘ฅ, 51. โˆซ ๐‘ฅ โˆš๐‘Ž + ๐‘๐‘ฅ ๐‘‘๐‘ฅ = 1 โˆš2 ln โˆฃ โˆš๐‘Ž + ๐‘๐‘ฅ โˆ’ โˆš๐‘Ž โˆš๐‘Ž + ๐‘๐‘ฅ + โˆš๐‘Ž โˆฃ , ๐‘Ž > 0, 52. โˆซ โˆš๐‘Ž 2 โˆ’ ๐‘ฅ2 ๐‘ฅ ๐‘‘๐‘ฅ = โˆš๐‘Ž 2 โˆ’ ๐‘ฅ2 โˆ’ ๐‘Ž ln โˆฃ ๐‘Ž + โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 ๐‘ฅ โˆฃ, 53. โˆซ ๐‘ฅโˆš๐‘Ž 2 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ = โˆ’ 13 (๐‘Ž 2 โˆ’ ๐‘ฅ2)3/2, 54. โˆซ ๐‘ฅ2โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 ๐‘‘๐‘ฅ = ๐‘ฅ8 (2๐‘ฅ 2 โˆ’ ๐‘Ž2)โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 + ๐‘Ž 4 8 arcsin ๐‘ฅ ๐‘Ž , ๐‘Ž > 0, 55. โˆซ ๐‘‘๐‘ฅ โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 = โˆ’ 1๐‘Ž ln โˆฃ ๐‘Ž + โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 ๐‘ฅ โˆฃ, 56. โˆซ ๐‘ฅ ๐‘‘๐‘ฅ โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 = โˆ’โˆš๐‘Ž2 โˆ’ ๐‘ฅ2, 57. โˆซ ๐‘ฅ 2 ๐‘‘๐‘ฅ โˆš๐‘Ž2 โˆ’ ๐‘ฅ2 = โˆ’ ๐‘ฅ2โˆš๐‘Ž 2 โˆ’ ๐‘ฅ2 + ๐‘Ž 2 2 arcsin ๐‘ฅ ๐‘Ž , ๐‘Ž > 0, 58. โˆซ โˆš๐‘Ž 2 + ๐‘ฅ2 ๐‘ฅ ๐‘‘๐‘ฅ = โˆš๐‘Ž 2 + ๐‘ฅ2 โˆ’ ๐‘Ž ln โˆฃ ๐‘Ž + โˆš๐‘Ž 2 + ๐‘ฅ2 ๐‘ฅ โˆฃ, 59. โˆซ โˆš๐‘ฅ2 โˆ’ ๐‘Ž2 ๐‘ฅ ๐‘‘๐‘ฅ = โˆš๐‘ฅ 2 โˆ’ ๐‘Ž2 โˆ’ ๐‘Ž arccos ๐‘Ž|๐‘ฅ| , ๐‘Ž > 0, 60. โˆซ ๐‘ฅโˆš๐‘ฅ2 ยฑ ๐‘Ž2 ๐‘‘๐‘ฅ = 13 (๐‘ฅ 2 ยฑ ๐‘Ž2)3/2, 61. โˆซ ๐‘‘๐‘ฅ ๐‘ฅโˆš๐‘ฅ2 + ๐‘Ž2 = 1๐‘Ž ln โˆฃ ๐‘ฅ ๐‘Ž + โˆš๐‘Ž2 + ๐‘ฅ2 โˆฃ , ๏˜ฟ
Docsity logo



Copyright ยฉ 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved