Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Mechanics of Materials Homework Set 12 Spring 2020 Due, Schemes and Mind Maps of Mechanics

For maximum distortion energy theory: Safety factor: = a. . = 150. 108.97. = ...

Typology: Schemes and Mind Maps

2021/2022

Uploaded on 07/05/2022

lee_95
lee_95 ๐Ÿ‡ฆ๐Ÿ‡บ

4.6

(59)

1K documents

1 / 12

Toggle sidebar

Related documents


Partial preview of the text

Download Mechanics of Materials Homework Set 12 Spring 2020 Due and more Schemes and Mind Maps Mechanics in PDF only on Docsity! ME 323: Mechanics of Materials Homework Set 12 Spring 2020 Due: Wednesday, Apr. 29 Problem 12.1 (10 points) A section is subjected to an axial load ๐‘ƒ, a torque ๐‘‡ and a moment ๐‘€. It has a diameter 2D. The material is ductile and has a yield stress ๐œŽ% = 150 ๐‘€๐‘ƒ๐‘Ž. Determine the factors of safety using the maximum shear stress theory and the maximum distortion energy theory. Use: ๐ท = 10 ๐‘š๐‘š, ๐‘ƒ = 100 ๐‘, ๐‘‡ = 80 ๐‘ โˆ™ ๐‘š,๐‘€ = 50 ๐‘ โˆ™ ๐‘š Solution: Point A has the absolute maximum normal stress. ๐œŽ2 = ๐‘ƒ ๐ด + ๐‘€๐‘ฆ ๐ผ7 = ๐‘ƒ ๐œ‹๐ท9 โˆ’ ๐‘€ โˆ— ๐ท ๐œ‹ 4 ๐ท = = โˆ’ 100 ๐œ‹ โˆ— 0.019 โˆ’ 50 โˆ— 0.01 ๐œ‹ 4 0.01 = = โˆ’63.98 ๐‘€๐‘ƒ๐‘Ž ๐œ27 = ๐‘‡๐ท ๐ผC = ๐‘‡ โˆ— ๐ท ๐œ‹ 2 ๐ท = = โˆ’ 80 โˆ— 0.01 ๐œ‹ 2 0.01 = = โˆ’50.93 ๐‘€๐‘ƒ๐‘Ž ๐œŽEFG = ๐œŽ2 2 = โˆ’31.99 ๐‘€๐‘ƒ๐‘Ž ๐‘… = ๐œŽ2 2 9 + ๐œ2I9 = โˆ’ 63.98 2 9 + 50.939 = 60.14 ๐‘€๐‘ƒ๐‘Ž Principal stresses: ๐œŽJ = ๐œŽEFG + ๐‘… = โˆ’31.99 + 60.14 = 28.15 ๐‘€๐‘ƒ๐‘Ž ๐œŽ9 = 0 ๐œŽK = ๐œŽEFG โˆ’ ๐‘… = โˆ’31.99 โˆ’ 60.14 = โˆ’92.13 ๐‘€๐‘ƒ๐‘Ž Absolute maximum shear stress: ๐œLE2,EMN = ๐œŽJ โˆ’ ๐œŽK 2 = 60.14 ๐‘€๐‘ƒ๐‘Ž Solution: ๐œŽ2 = โˆ’10 ๐‘€๐‘ƒ๐‘Ž, ๐œŽI = 30 ๐‘€๐‘ƒ๐‘Ž, ๐œ2I = 15 ๐‘€๐‘ƒ๐‘Ž ๐œŽEFG = ๐œŽ2 + ๐œŽI 2 = 10 ๐‘€๐‘ƒ๐‘Ž ๐‘… = ๐œŽ2 โˆ’ ๐œŽI 2 9 + ๐œ2I9 = 209 + 159 = 25 ๐‘€๐‘ƒ๐‘Ž (1) Principal stresses: ๐œŽJ = ๐œŽEFG + ๐‘… = 35 ๐‘€๐‘ƒ๐‘Ž ๐œŽ9 = 0 ๐œŽK = ๐œŽEFG โˆ’ ๐‘… = โˆ’15 ๐‘€๐‘ƒ๐‘Ž Absolute maximum shear stress: ๐œLE2,EMN = ๐œŽJ โˆ’ ๐œŽK 2 = 25 ๐‘€๐‘ƒ๐‘Ž Von mises stress: ๐œŽO = 1 2 ๐œŽJ โˆ’ ๐œŽ9 9 + ๐œŽ9 โˆ’ ๐œŽK 9 + ๐œŽK โˆ’ ๐œŽJ 9 = 44.44 ๐‘€๐‘ƒ๐‘Ž (2) Ductile material: For maximum-shear-stress theory: Safety factor: ๐‘†๐น = ๐œŽ% ๐œLE2,EMN โˆ— 2 = 75 50 = 1.5 For maximum distortion energy theory: Safety factor: ๐‘†๐น = ๐œŽ% ๐œŽO = 75 44.44 = 1.69 (3) Brittle material: For maximum normal stress theory: In tension: ๐œŽST = ๐œŽJ = 35 ๐‘€๐‘ƒ๐‘Ž Safety factor: ๐‘†๐นT = 100 35 = 2.86 In compression: ๐œŽSU = ๐œŽK = โˆ’15 ๐‘€๐‘ƒ๐‘Ž Safety factor: ๐‘†๐นU = 120 15 = 8 So, ๐‘†๐น = ๐‘†๐นT = 2.86 For Mohrโ€™s failure criterion: ๐œŽJ 100 โˆ’ ๐œŽK 120 = 35 100 + 15 120 = 0.475 Safety factor: ๐‘†๐น = 1 0.475 = 2.11 Problem 12.3 (10 points) A pipe has outer diameter 4๐‘‘ and inner diameter 2๐‘‘ . The material has a yield stress ๐œŽ% = 200 ๐‘€๐‘ƒ๐‘Ž. If the factor of safety at point A is 2, determine the minimum value of ๐‘‘ using the maximum shear stress theory and the maximum distortion energy theory. ๐น๐‘† = ๐œŽ% ๐œŽO = 2 ๐œŽO = 200 โˆ— 10_ 2 = 100 ๐‘€๐‘ƒ๐‘Ž ๐‘‘ = 8.20 ๐‘š๐‘š Problem 12.4 (10 points) A horizontal rigid bar DCB is supported by a pin-fixed column AC and is subjected to a uniformly distributed load ๐‘ž. The column AC has a Youngโ€™s modulus ๐ธ and a rectangular cross section as is shown. Consider supports A and C to act as pinned-pinned when buckling in x-y plane and fixed- fixed when buckling in y-z plane. Determine the maximum distributed load ๐‘ž can be applied without buckling. Use: ๐ฟ = 2 ๐‘š, ๐‘ = 40 ๐‘š๐‘š, โ„Ž = 60 ๐‘š๐‘š, ๐ธ = 150 ๐บ๐‘ƒ๐‘Ž Solution: FBD: ๐‘€ = 0f : ๐‘ž โˆ— 2๐ฟ โˆ— 2๐ฟ โˆ’ ๐นU โˆ— 2๐ฟ = 0 (1) solving for equation (1): ๐นU = 2๐‘ž๐ฟ For buckling in x-y plane, ๐ผ7 = 1 12โ„Ž๐‘ K ๐‘ƒgh = ๐œ‹9๐ธ๐ผi ๐พ๐ฟ 9 = ๐œ‹9150 โˆ— 10k โˆ— 112 0.06 โˆ— 0.04 K 1 โˆ— 2๐ฟ 9 = 29.61 ๐‘˜๐‘ ๐นU = 2๐‘ž๐ฟ = ๐‘ƒgh ๐‘žgh = ๐‘ƒgh 2๐ฟ = 7.4 ๐‘˜๐‘/๐‘š For buckling in y-z plane, ๐ผ2 = 1 12 ๐‘โ„Ž K ๐‘ƒgh = ๐œ‹9๐ธ๐ผi ๐พ๐ฟ 9 = ๐œ‹9150 โˆ— 10k โˆ— 112 0.04 โˆ— 0.06 K 0.5 โˆ— 2๐ฟ 9 = 266.48 ๐‘˜๐‘ ๐นU = 2๐‘ž๐ฟ = ๐‘ƒgh ๐‘žgh = ๐‘ƒgh 2๐ฟ = 66.62 ๐‘˜๐‘/๐‘š So, the maximum distributed load ๐‘ž = 7.4 ๐‘˜๐‘/๐‘š
Docsity logo



Copyright ยฉ 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved