Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Microscopic Approach: Chemical Potential & Partition Functions - Prof. Stefan Franzen, Study notes of Physical Chemistry

An in-depth lecture on the microscopic treatment of the equilibrium constant, focusing on the expression of chemical potential in terms of partition functions. The lecture covers the concept of chemical potential, its relation to the equilibrium constant, and the significance of molecular partition functions. The document also discusses the kinematic and electronic contributions to the partition function, as well as the concept of vibrational temperature and rotational temperature.

Typology: Study notes

Pre 2010

Uploaded on 03/18/2009

koofers-user-k86-1
koofers-user-k86-1 🇺🇸

10 documents

1 / 13

Toggle sidebar

Related documents


Partial preview of the text

Download Microscopic Approach: Chemical Potential & Partition Functions - Prof. Stefan Franzen and more Study notes Physical Chemistry in PDF only on Docsity! Microscopic Treatment of the Equilibrium Constant Lecture The chemical potential    The chemical potential can be expressed in terms  f h fo  t e partition  unction: μ j = – RT ∂ ln Qj ∂N To see this we first expand lnQj, starting with the  fact that Qj = qjNj/Nj!, j       ln Qj = Njln qj – ln Nj! = Njln qj – Njln Nj + Nj and then take the derivative with respect to Nj, ∂ln Qj = ln q ln N 1 + 1 = ln qj ∂Nj j – j – Nj In considering the molecular partition function  we must consider the kinematic contributions  and electronic contributions.  In other words if  we write the molecular partition function as q = q q q ibq l the molecular motions, translation, rotation  trans rot v e ec and vibration are kinematic contributions to  the available energy space.   The electronic  f ffpartition  unction is somewhat di erent since it  represents the binding energy of a molecule  hwit  respect to constituent atoms.   Until now we have simply stated that qelec = gelec h l i d hi i i lt e e ectron c  egeneracy.  T s  s equ va ent to  ignoring the energetic contributions to  h i l b d d i l lc em ca   on s an  treat ng mo ecu es as  translating, rotating and vibrating collections of  l i h h ld h b b dnuc e  t at are  e  toget er  y  on s.   However, when we deal with chemical  i h b d fi i i h ireact ons t ere are,  y  e n t on c anges  n  bonding.  We can accommodate this by writing h D h bi di qelec = geleceD0/RT w ere  0 represents t e  n ng energy. The binding energy D0 is equal to the  equilibrium energy De shown in the figure  minus the zero point energy. D0 = De – hν/2 The zero point energy is shown as the red stripe  at the bottom.   For CO this energy is  calculated to be 1067 cm‐1 and De is –96,545 cm‐1.   Thus, the zero point energy  is typically a small correction. Vibrational temperature To simplify the writing of the partition function we can  define a vibrational temperature, Θvib.  We define  Θvib = hω/k B qvib = 11 Θ /T Thus, the vibrational partitionc function has a simple form.   Note that the vibrational temperature represents the at – e– vib                 significant population of higher vibrational levels occur. Rotational partition function and  rotational temperature In the high temperature limit the rotational partition  f nction is   u     qrot ≈ 8π2IkT h2 = kTB where B is called the rotational constant.  The  rotational spectrum line spacing is 2B.  Thus, we can  define a rotational temperature, Θrot, such that: Θ rot = 8π2Ik h2 qrot ≈ TΘ rot Symmetry number For molecules with an axis of symmetry there are  fewer unique rotational states accessible The        .     partition function is therefore reduced by the  symmetry number σ, which corresponds to the              multiplicity of the symmetry axis.  For example, for a  diatomic molecule the symmetry number is 2.  For the  rotation about the axis of symmetry in ammonia is 3. qrot ≈ TσΘ rot
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved