Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Understanding Proteins: Structure, Function, and Composition, Study notes of Biology

An in-depth exploration of proteins, their role in various functions, the structure of amino acids, and the importance of peptide bonds. Proteins are essential macromolecules made up of 20 different amino acids, linked together by peptide bonds. Their unique three-dimensional structures determine their functions, which include storing and transporting molecules, acting as enzymes, and providing structural support. The document also discusses the role of hydrogen bonds, the importance of the peptide backbone, and various amino acid properties.

Typology: Study notes

Pre 2010

Uploaded on 03/18/2009

koofers-user-dyo
koofers-user-dyo 🇺🇸

10 documents

1 / 22

Toggle sidebar

Related documents


Partial preview of the text

Download Understanding Proteins: Structure, Function, and Composition and more Study notes Biology in PDF only on Docsity! Proteins They are a relatively homogeneous class of molecules. All are the same type of linear polymer built of various combinations of the same 20 amino acids differing only in the sequence. Their functional diversity lies in the three-dimensional structures that these linear polymers can make by simply being linked in different sequences. What do proteins do? Pretty much everything *Store and transport a variety of molecules *Guide flow of electrons in processes such as photosynthesis *Transmit information between specific cells within an organ *Control passage of molecules across membranes of compartmentalized cells and  organelles *Function in immune system to defend against intruders (antibodies) *Control gene expression by binding to specific sequences of nucleic acids to turn them  on/off *Structural stability within cells including hair, nails, tendons, and bones of animals In proteins, the amino acid is linked together by PEPTIDE BONDS H Amino acid 1 Amino acid + o, sk ri bond Each amino acid in a polypeptide chain is referred to as a residue Usually between 50 to 3000 linked together to form a polypeptide chain > 50 – protein <50 – polypeptide This polymeric, linear linkage—Primary sequence structure The sequence of amino acids in a protein/polypeptide chain  generally identifies a protein unambiguously. Asymmetric  center Peptide bond: appears to have ~40%  double bond character which makes it  strong Rotation about this bond is restricted  and pretty planar Shorter bonds are stronger and have less movement. Trans‐ Conformer The peptide backbone is not very reactive chemically.  The only groups usually  ionized are the terminal α ‐amino and carboxyl groups, which normally have pKa values of about 7.4 to 3.9, respectively depending on the nature of the terminal  amino acid residue.  A proton is added or lost to internal peptide bonds only at  extremes of pH.  The apparent pK value of the amide NH for deprotonation is  between 15 and 18 and is in the region of  ‐8 to ‐12 for protonation.  The oxygen  atom of the carbonyl group is protonated more readily, with an apparent pK of  about ‐1.  These properties facilitate the exchange of hydrogen isotopes  between the backbone and aqueous solvents, which is important to the study  of protein fluctuations in solution. The amide proton has the ability to  exchange with the solution to create a constant exchange process.   Glycine It has no αC asymmetry Glycine is a very flexible  residue because there is  no steric hindrance.  This  allows glycine to be  dynamic . It is very common in loops. Aliphatics Hydrophobic‐ They  hate water but love  each other They also like other  non‐polar atoms.  They  are referred to as  STICKY.  They help  stabilize the folded  conformations of  proteins. Acidic residues Even though they look similar,  the are not close functionally  due to the extra –CH2 on  Glutamine. The –COO group clearly likes  positive charges which makes  these good for metal ion  binding. Proteins do whatever  necessary to dispel charge  such as binding to metals. Amide Residues Neither is too reactive Have polar ends and  are H‐bond acceptors  and donors e.g. If an Asn and Gly are next to each other,  a kink could possibly  form due to  deamidation (side  chain and backbone  react)…why Gly? Basic Residues Interact with DNA (nucleic acids) Normally ionized but if not , the  side  chain becomes very reactive and a  potent nucleophile Good H‐bond donor Tend to be hydrophobic within chain  and very non‐hydrophobic at end of  chain Has a very long side chain which likes  to interact with water in solution  because end is polar Searches for negative species, mostly  on surface of proteins Molar absorptivity, € 40,000 |- 20,000 10,000 5,000 2,000 1,000 500 200 100 50 20 Tt TdAeae i 2 Cet TO T TTT T 240 260 Wavelength (nm) 280 300 320 The aromatic residues are responsible for ultraviolet and fluorescence properties of proteins, also known as chromophores. The spectral properties of the side chains are very sensitive to local environmental changes and are useful probes of structures. Sulfur containing residues BES TaN "COOH H methionine Non-polar and unreactive. The sulfur can not be protonated. Acts as a nucleophile a little. cysteine Very reactive The —CH2 can ionize at mild alkaline conditions. Disulfide bonds can form between two cysteine residues in deprotonating conditions. The cysteines will lose their H’s when in a pH above 7. To break the bond, decrease pH below 7. cysteine
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved