Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

organic chem reactions, Study notes of Chemical Experimentation

organic chem reactions for exam 2-3

Typology: Study notes

2018/2019

Uploaded on 03/07/2023

kritxh
kritxh 🇺🇸

1 document

1 / 36

Toggle sidebar

Related documents


Partial preview of the text

Download organic chem reactions and more Study notes Chemical Experimentation in PDF only on Docsity! Addition of Excess Alcohol and H+ to form Acetals -Must be excess (XS) alcohol, in this class use ethanol Can be written as: -Ethanol (XS), H+ -CH3CH2OH (XS), H+ - ***NOTE: Acetals DO NOT react in base, it’s base stable! OH (XS), H+ H O H RO ORROH (XS), H+ acetal Addition of Water to form Hydrate -Can be done from aldehydes or ketones -Can use NaOH/H2O or H3O+ instead of water also H HO OH hydrate H O H2O or NaOH/ H2O or H3O+ aldehyde O ketone Aldehyde Oxidation using Silver Nitride and Base -Oxidizes aldehydes to carboxylic acid -Ag ion reduces to Ag0 R H O Ag (NO3) NH3/ OH R OH O carboxylic acid Ag0 Addition of Alcohol to form Hemiacetal -In this class use ethanol H HO ORR—OH hemiacetal H O Adol Reaction -Nucleophile = enols (if in acid) / enolates (if in base) -Electrophile = carbonyls -THe nucleophile will attack the electrophile -Step 1: Depronation of alpha carbon -Step 2:aldol addition and protonation **Conjugated [roduct is prefered and defined by cold reactant H HH + O O O OH C—C bond formed H O H O + 1.) NaOH 2.) H2O H O OH nucleophile electrophile beta-hydroxy dicarbonyl H + O H OH 1.) H+ 2.) H2O H O alpha, beta-unsaturated carbonyl O O NaOH / H2O / Heat NR Acetals in Basic Conditions -Acetals DO NOT react in basic conditions -Acetals are base stabilized O OCH3 NaOH / H2O / Heat NR Aminolysis -Amino = NH2 Follows the nucleophilic carbonyl substitution mechanism -Can react with ammonia, 1 ° or 2 ° amine -Makes amides R Cl O R2NH R N R' O R' amide R Cl O R Cl O R’—NH2 R Cl O R’2—NH R’2—NH R OR O HNR’2 H+/ Δ NH3 NH3O O R O R O O R NH2 O R NH O R' R N R' O R' amide R NR’2 O R OH O + NR HO NH2 O O HO NH2 O O + Bromination of Benzene -Electrophilic aromatic substitution -Forms benzyaldehydeBr2 FeBr3 H O R R mCPBA R R O R R O R H O mCPBA mCPBA R O O R ester epoxide R OH O carboxylic acid O O O mCPBA O O O mCPBA O O major Baeyer-Villiger Oxidation -Uses mCPBA -Turns alkenes —> epoxides -Turns ketones —> esters -Turns aldehydes —> carboxylic acids ***NOTE: If mCPBA is used on asymmetric ketone, then the ester forms on the more substituted (big) side H O O H O mCPBA fumate ester H O mCPBA O H O O mCPBA O O O mCPBA O O Carboxylic Acid Synthesis -Jones turns 1 ° OH —> C.A. -O3 & ROOR turns alkene —> C.A. -CO2 & H3O+ turns R-MgX and R-Li —> C.A. OH R OH O carboxylic acid Jones 1.) O3 2.) ROOR R MgX R Li 1.) CO2 2.) H3O+ R OH2 O R OH O R OH O H O NaOH Δ O O OH Cannizaro Reaction - Base induced disproportionation which means reduction and oxidation occurs at same time - Limited to benzaldehydes Clemmenson reduction - Uses to reduce aldehydes or ketones to alkanes using HCl and Zn0/ Hg0 -Occurs under acidic conditions O H HZn0/ Hg0/HCl Decarboxylation -Removes carboxylic acid -Know just 3 ways using H+ and ΔR OH O O H+ Δ R CH3 O CO2 Beta-Keto Acid R OH O O H+ (or H3O+) Δ R H C O CO2 R O O O H+ (or H3O+) Δ R O H HO OH OO H+ (or H3O+) Δ HO CH3 O malonic acid CO2 O O OO Deuterated Chlorine (DCl) and Heavy Water (D2O) Reaction -DCl acts like HCl aka acts as an acid -DCl will turn carbonyl into an enol -It will not stop turning all H into D until all are gone -D2O will result in the same thing O O OH O D D D D DDCl H2/deuterium O D2O OD O D D D D Diisobutylaluminum Hydride (DIBAL-H) -Has (- # ° C) because it prevents over reduction 1.) DIBAL / 2.) H2O -Reduces a lot of things to aldehydes 1.) DIBAL / 2.) H2O/ HCl -Reduces nitrile to imines, then hydrolyzed by acid to amine O OH carboxylic acid H3CO O ester R H O aldehydes 1.) DIBAL 2.) H2O 1.) DIBAL 2.) H2O/ HCl N nitrile H O R Cl O acid chloride R O R O O anhydride R OR O R N R' O R' amide esters R N nitrile 1.) DIBAL (-78 ° C) 2.) H3O+ R H O aldehyde 1.) DIBAL (-78 ° C) 2.) H3O+ R H O aldehyde 1.) DIBAL (-78 ° C) 2.) H3O+ R H O aldehyde 1.) DIBAL (-78 ° C) 2.) H3O+ R H O aldehyde 1.) DIBAL (-78 ° C) 2.) H3O+ R H O aldehyde + R’—OH O Base Acid OH O Enol vs. Enolate -Carbonyls exists in 2 tautomerized forms: keto and enol -Depending on if the keto is reacted with base or acid, it can form a enolate or enol -Enolates are nucleophiles enol enolate Fishcher Esterification -Usually consists of an alcohol and acid catalyst (H+) and heat -H2SO4 and TsOH can also be used as an acid catalyst R OH O carboxylic acid R-OH acid catalyst R OR O ester H2O OH O OH H+ O O OH O CH3OH H2SO4 OCH3 O HO OH O O O H+ HO OH O O O H2SO4 (cat.) Δ HO OH O O CH3CH2OH (2 equiv.) CCl4, Δ O O O O Haloform Reaction -A reaction with methyl ketone -Converted to a carboxylic acid and haloform R= H, alkyl, aryl X= Cl, Br, I O O O X2 Base (OH) + HCX3 R CH3 O X2 Base (OH) R O O + CHX3 Halogenation -Occurs when one or more halogens are added to a substanceH O X2 H+ H OH XO Br2 H+ O Br O Br2 H+ Br O O + Br Hydroboration 1.) BH3 . THF 2.) H2O2, KOH -Anti-Markovnikov -Syn addition on same side —> —> - Creates a bond with OH on it too -Hydroboration alone makes alkylborane CH3 H OH CH3 1.) BH3 . THF 2.) H2O2, KOH 1.) BH3 . THF 2.) H2O2, KOH O H Hydroboration 1.) BH3 . THF 2.) H2O2, KOH -Anti-Markovnikov -Syn addition on same side —> —> - Creates a bond with OH on it too -Hydroboration alone makes alkylborane 1.) BH3 . THF 2.) H2O2, KOH OH R Cl O acid chloride R O R O O anhydride R OR O R N R' O R' amide esters R N nitrile 1.) BH3 THF 2.) H3O+ R OH R OH + R’—OH R N R’ H H R’ R NH2 amide NR 1.) BH3 THF 2.) H3O+ 1.) BH3 THF 2.) H3O+ 1.) BH3 THF 2.) H3O+ 1.) BH3 THF 2.) H3O+ R Cl O H2O R OH O + HCl O H3O+ Δ O + ’R OH O O O H2O OH OH O O + Hydrolysis Methods -Can use water, hydronium ion w/ heat or Saponification -Regardless of method there will be a tetrahedral intermediate ***Note, these are examples are of esters R O R’ H3O+ Δ R OH + ’R OH O O H3O+ Δ HO OH O lactone O O H3O+ Δ OR O EtOH+ R N R' O R' H3O+ Δ R OH O H2NR’2+ NH4R N H3O+ Δ R OH O + Hydrolysis Mechanism - Can only be done with the hydronium ion (H3O+) in most cases - Hydrolysis happens when there are two oxygens separated by a bond - H30+ pronates O and gives it a + charge which then leads to rearrangement —> rings can open to form chains O O HO H O H3O+ H2O H H O O HO O H2O HO H OH HO H O H H2O Lithium Aluminum Hydride (LAH) Reduction -Strong reducing agent -Consists of LiAlH4 and H3O+ Reducing agent w/ H3O+ -Reduces carboxylic acid —> 1° OH -Reduces ester —> 1° OH -Reduces aldehyde —> 1° OH -Reduces ketone —> 2° OH -Reduces epoxide —> 2° OH ***LAH on alcohol does nothing because it just reforms an alochol again R OH O carboxylic acid OH 1.) LiAlH4 2.) H3O+R O O R ester R H O aldehyde 1° OH Lithiates/ Organolithium - Reduces to alcohols by reacting with electrophilic carbonyls R R O R H O H H O 1.) R’—Li or R—MgX 2.) H3O+ 1.) R’—Li or R—MgX 2.) H3O+ 1.) R’—Li or R—MgX 2.) H3O+ R R OH R' R R' OH ’R OH Knoevenagel Condensation Reaction -Forms a ring -Consists of 2 parts Michael Addition Aldol Condensation -The aldol condesation is intramolecular -Creates a 6-membered ring containing a alpha-beta unsaturated ketone RO OR O O ’R R” O Base (R—O) RO OR O O ’R R’ R R O epoxide 1.) LiAlH4 2.) H3O+ OH R R O ketone 2 ° OH R Cl O acid chloride R O R O O anhydride R OR O R N R' O R' amide esters R N nitrile 1.) LAH 2.) H3O+ R OH 1.) LAH 2.) H3O+ 1.) LAH 2.) H3O+ 1.) LAH 2.) H3O+ 1.) LAH 2.) H3O+ R OH2 R OH + R’—OH R N R’ H H R’ R NH2 amide OH OH 1.) LAH 2.) H3O+ O LAH H3O+ O LDA THF, -78 ° C OLi O 1.) LDA 2.) R—Lg O + Li—Br N H Lithium Diisopropylamide (LDA) -LDA is a strong, bulky base -Forms enolates LDA remove proton selectively from carbon -Can deprotonate alpha proton w/o help -LDA will not attack carbonyls, esters, and nirtiles b/c it’s a nuclear base O LDA O Methylamine with Hydrogen Ion to form Imine - CH3NH2, H+ - Turns =O —> Imine Imine written as: R H N R R N R O N CH3NH2, H+ R N R R Metallic Magnesium or Magnesium Metal (Mg0) -Adds Mg in front of Br on a chain or other alkyl halide If followed by: -H3O+ then it pronates, usually used instead of CO2 if there is already a carbonyl present, - 1.)CO2(s) & 2.) H3O+ then MgBr turns to carboxylic acid BrMg H HO H O Mg0 CO2, H30+ Mg0 H30+ O O H2O H OH Br + Nitrile Synthesis -Nitriles can be formed using -POCl3, P2O5, or SOCl2 to dehydrate 1° amide -Cynanide Ion or NaCN on bromide using SN2 R NH2 O POCl3 R N nitrile 1° amide R NH2 O SOCl2 R N nitrile 1° amide R OH R LG NaCN R N nitrile CHNH nitrile R N *adds one carbon R NH2 O P2O5 R N nitrile 1° amide Oxalyl Chloride -Found in Swern reaction -Changes OH on carboxylic acid to Cl -Same thing happens using Phosphorus Pentachloride (PCl5) R OH O carboxylic acid Cl Cl O O R Cl O OH O PCl5 Cl O benzoic acid benzoyl chloride R R OH 1.) oxayl chloride, DMSO 2.) Et3N R R O Ozonalysis -Oxidant -Cleaves alkenes into carbonyls aka a ketone and aldehyde 1.) O3 2.) Me2S H O O + Oxidation from Aldehyde to Caboxylic Acid - Oxidize aldehyde to carboxylic acid - Reduces Ag ions to Ag metalsR H R OH O O Ag(NO3) NH3 / OH Ag0 Perkin Alicyclic Synthesis -Used to make cinnamic acids -Results in an alpha, beta- unsaturated aromatic acids via aldol condensation of an aromatic aldehyde and acid anhydride -Occurs in presence of alkali salt of acid -Alkali salt acts as base catalyst Phophorus Pentoxide Reaction (P2O5 / P2O10) -Forms anhydrides when it dehydrates carboxylic acids -Amide can react via elimination to form nitriles R OH O 2 P2O5 or P2O10 O O O R NH2 O P2O5 R N PCC (weak oxidizer) -1 degree OH —> aldehyde -2 degree OH —> ketone OH R H O OH O 2° OH —> ketone 1° OH —> aldehyde PCC PCC Potassium Permanganate -Reaction will only work if H is attached to carbon -Oxidation wll result in benzoic acid KMnO4 OH O KMnO4 OH O OH O KMnO4 NR Reductive Amination -All uses two steps, step 2 is the same for all using Sodium Borohydride and H3O+ -Carbonyl —> 2 ° amine - Step 1: R-NH2/ H+ -Carbonyl —> 1 ° amine - Step 1: NH3 -Carbonyl —> 3 ° amine - Step 1: R2-NH/ H+ R-NH2 H+ NaBH4 H3O+R R N R R HN R' 2 ° amine R R O NaBH4 H3O+R R NH R R NH3 1 ° amine NH3 NaBH4 H3O+ 3 ° amine R2-NH H+R R O R R NR2 R R N ’R R' Retro-Adol Reaction -Reaction where beta-hydroxy carbonyl decomposes into an aldehyde or ketone H O OH H H + O O C—C bond breaks R R R O Rosenmund Reaction -Catalytic hydrogenation of acid chlorides -Reduction forms aldehydes -Selects for acyl chloridesR Cl O acid chloride H2 Pd, BaSO4 R H O aldehyde + HCl Sodium Borohydride & H3O+ Reduces Imines to Amines - NaBH4 and H3O+ - Imine —> Amine Note the differences: Amine Amide Imine Enamine NH2 O NH2 H N NH2 N HNNaBH4 H3O+ N H O H H O N OH NH NaBH4 H3O+ 2 ° amine NH NR2 NaBH4 H3O+ NaBH4 H3O+ N NH2 R Cl O acid chloride R O R O O anhydride O NaBH4 NR NaBH4 R OH R OH O + Sodium Borohydride -Of the following, it only reacts with anhydrides R OR O R N R' O R' amide esters R N nitrile NaBH4 NaBH4 NaBH4 NR NR NR Sodium Cyanoborohydride - No reaction on carboxylic acid or carbonyls in general -Is selective in reducing imines to to 2 ° amineR OH O 1.) NaCNBH3 2.) H3O+ NR carboxylic acid N O 1.) NaCNBH3 2.) H3O+ NH O R Cl O NaCNBH3 NR acid chloride R O R O O NaCNBH3 NR anhydride R OR O NR 1.) NaCNBH3 2.) H3O+ (cold) esters R N R' O R' amide NR 1.) NaCNBH3 2.) H3O+ R N NR 1.) NaCNBH3 2.) H3O+nitrile Stork Reaction -Cyclohexane is reacted with piperidine to form an enamine -Once enanmine is formed, hydrolyze it by doing an SN2 reaction and get pronated by H3O+ to make alkylated carbonyls O N H H+ N N R Lg SN2 Enamine N R H3O+ O R Stork Enamine Alkylation (Michael-Stork) Addition -Enamines add to alpha, beta- unsaturated carbonyls (Michael acceptor) O R2NH/ H+ N R R O1.) O O 2.) H3O+ O N R R Wittig Reaction -Reacts aldehyde or ketone with ylide to form alkeneR R O R R' PØ3 O H H PØ3 CH2 Symmetrical ylide O H H3C PØ3 Asymmetrical ylide H ylide alkenealdehyde or ketone H O H H PØ3 H CH2 Symmetrical ylideAsymmetric carbonyl H O Asymmetric carbonyl H H3C PØ3 Asymmetrical ylide Cis product is major Wolff-Kischner Reduction of Carbonyls to CH2 -Same results as Mozingo and Clemmenson reduction -Forms imine intermediate that then reduces to CH2 -Uses hydrazine, heat and KOH R R O H HH2N-NH2 KOH/ Δ alkane Ylide Formation - 1 SN2 step that reacts a primary or secondary methyl halide with triphenol phosphine -Further react with butyl lithium to form reactive ylide R R Br PØ3 SN2 R PØ3 R’ H Li R R' PØ3reactive ylide
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved