Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

PADI, Open Water Diver, Final Exam Review 2023, Exams of Health sciences

PADI, Open Water Diver, Final Exam Review 2023

Typology: Exams

2022/2023

Available from 07/24/2023

doctorate01
doctorate01 🇺🇸

3.8

(8)

2.8K documents

1 / 23

Toggle sidebar

Related documents


Partial preview of the text

Download PADI, Open Water Diver, Final Exam Review 2023 and more Exams Health sciences in PDF only on Docsity! PADI, Open Water Diver, Final Exam Review 2023 D float. Salt water is heavier than fresh water because it has dissolved minerals in it. This means it causes more upward force (buoyancy) on an object. An object that is neutrally buoyant in fresh water would float in salt water because there is greater upward force. See Being a Diver I - Buoyancy and Controlling Buoyancy. - answers>1) If an object is neutrally buoyant (does not sink or float) in fresh water, the same object placed into salt water would A sink. B either sink or float. C do nothing. D float. B The balloon will get smaller and the air inside the balloon will be more dense (molecules move closer together). As water pressure increases, the volume of an air space will decrease. This causes the density of the air inside to increase and air molecules are pushed closer together. The balloon would get smaller and the air density inside would be greater. See Being a Diver I - Water Pressure and Air Volume Effects. - answers>2) I blow up a balloon, tie it off, and take it to the bottom of the swimming pool. What will happen to the balloon and the air inside it? A The balloon will get bigger and the air inside the balloon will be less dense (molecules move further apart). B The balloon will get smaller and the air inside the balloon will be more dense (molecules move closer together). C The balloon will get bigger and the air inside the balloon will be more dense. D The balloon will get smaller and the air inside the balloon will be less dense. A become half the size it was at the surface. At 10 meters, the pressure is 2 bar. An air volume taken to this depth from the surface would decrease and become half the size. See Being a Diver I - Water Pressure and Air Volume Effects. - answers>3) I turn a glass upside down, trap the air in it by putting it in water, and then I take the glass down to 10 meters. The air space would A become half the size it was at the surface. B not change in size. C become 1/3 the size it was at the surface. D become 2/3 the size it was at the surface. C A cold, allergy or another medical problem. A cold, or any congestion, can block air passages in your ears and sinuses, making equalization difficult or impossible. See Being a Diver I - The Effects of Increasing Pressure on Body Air Spaces. - answers>4) If I am not able to equalize (clear) my body air spaces, it may be because I have A seasickness. B heart disease and high blood pressure. C a cold, allergy or another medical problem. D anxiety. C I am feeling a squeeze and need to equalize. Pain in your ears or sinuses means that they aren't equalized. Stop your descent and ascend slightly to relieve pressure on your ears. Then attempt to equalize again. If you can't equalize, end the dive. See Being a Diver I - The Effects of Increasing Pressure on Body Air Spaces. - answers>5) If my ears or sinuses hurt while I am descending (going down), it usually means A my air spaces are equalized. B my mask strap is too tight. C I am feeling a squeeze and need to equalize. D my mask is too small. See Equipment I - Cylinder Care. - answers>11) Which of the following is part of proper care for my scuba cylinder? A Sand and repaint it every year. B Dry it in the sun. C Keep some air in it. D Have it pressure tested every month. 1. regulator first stage, 2. regulator second stage, 3. alternate air source second stage, 4. instrument console/gauges/computer.5. low pressure inflator hose for the BCD. Your regulator consists of five components. The first stage is the "hub" of your regulator and supplies air to the components - the second stage, alternate air source, low pressure inflator hose and SPG/dive computer. See Equipment I - Regulators. - answers>12) Refer to the regulator picture. Each regulator part has a number next to it. Please choose the correct number for the choices below. regulator first stage, regulator second stage alternate air source second stage low pressure inflator hose for the BCD instrument console/gauges/computer A Larger and/or nearer As light travels through water and into your mask, it bends, or refracts. This makes objects appear larger and closer than they really are. See Being a Diver II - Seeing and Hearing as a Diver. - answers>13) When I look at things underwater they often seem ___________ than they look on the surface. A larger and/or nearer B larger and/or further away C smaller and/or further away D smaller and/or nearer D Sound Sound travels about four times faster in water than in air. This makes it difficult to determine where the sound is coming from because it seems to come from all around or directly overhead. See Being a Diver II - Hearing Underwater. - answers>14) ___________ travels faster in water than it does in air. This is why you cannot easily tell where it comes from. A Light B Current C Aquatic life D Sound C 15 meters If there are no specific local laws regarding dive flags, stay within 15 meters of the flag. Boats should stay 30 to 60 meters away. See Equipment III - Dive Flags. - answers>15) Unless there are laws that say differently, I should stay within ___________ of my dive flag. A 60 meters B 30 meters C 15 meters D 5 meters B Stop all activity and rest, holding onto something for support if possible. If you find it difficult to breathe you're overexerted. Immediately stop and rest while holding onto something for support to restore normal breathing. Continue only after you've regained a normal, slow breathing rate. See Being a Diver II - Overexertion. - answers>16) If I work too hard and find it difficult to breathe underwater, I should A inflate my BCD. B stop all activity and rest, holding onto something for support if possible. C swim immediately to my buddy and signal for help. D do a controlled emergency swimming ascent (CESA - swimming up to the surface saying the ah-h-h-h sound). A Compress (feel thinner) from water pressure, and I will lose buoyancy and warmth. The small bubbles in your wet suit compress as you get deeper. This causes your buoyancy to decrease and makes the wet suit thinner, which affects warmth. To control your buoyancy, add small amounts of air to your BCD frequently during descent. See Being a Diver II - Descents in Open Water. - answers>17) As I descend (go down), my wet suit will A compress (feel thinner) from water pressure, and I will lose buoyancy and warmth. B expand (feel thicker) from water pressure, and I will gain buoyancy and warmth. C remain the same thickness from the water pressure, and there will be no change in warmth. D expand (feel thicker) from water pressure, and I will lose buoyancy and warmth. C Float at eye level while holding a normal breath of air and with an empty BCD. Part of having good buoyancy and trim is having the right amount of weight. You should float at eye level with an empty BCD and holding a normal breath. When you exhale, you should slowly sink. See Your Skills as a Diver II - Weight Check and Proper Weighting. - answers>18) I know I am properly weighted for diving if I A float at neck level with my BCD about half full while I am holding a normal breath of air. B sink slowly holding a normal breath of air and with an empty BCD. C float at eye level while holding a normal breath of air and with an empty BCD. D sink easily with a partially filled BCD. A Stop, hold it, stay there. This is the hand signal for stop, hold it or stay there. See Your Skills as a Diver I - Hand Signals. - answers>19) Choose the best answer for the signal shown from the choices provided. C Share air. D Go up. B Share air. This is the hand signal for share air. See Your Skills as a Diver I - Hand Signals. - answers>26) Choose the best answer for the signal shown from the choices provided. A Turn the dive. B Share air. C I am thirsty. D I have lost my mouthpiece. B Search for a minute and then go up to reunite with my buddy at the surface. The general procedure for buddy separation is to search for no more than one minute, then surface to reunite. See Being a Diver II - The Buddy System. - answers>27) If I were separated from my buddy, the general procedure is to A go up immediately, wait a minute and then go back down. B search for a minute and then go up to reunite with my buddy at the surface. C go to the surface immediately and get out of the water. D look for my buddy's bubbles and follow the bubbles to find my buddy. D In midwater When descending and ascending in reduced visibility, you can feel disoriented, especially in mid-water when you can't see either the bottom or the surface. See Being a Diver III - Visibility. - answers>28) I am most likely to become confused about which way is up or down _____________. A at the surface B near the surface C on the bottom D in midwater C Dive against or into the current. By swimming into a current for the first part of a dive, you can let it carry you back to where you started during the second part. See Being a Diver III - Water Movement. - answers>29) I feel a mild current at the start of my dive. How should I begin this dive? A Dive with the current. B Dive across the current. C Dive against or into the current. D Dive at an angle to the current. A Visibility (how far you can see underwater). The nature and composition of particles in the water affects visibility. Large, heavy material - like from gravel and rock bottoms - settles out of the water quickly, restoring visibility quickly. Small, light particles - like from mud and clay bottoms - can remain suspended for very long periods. See Being a Diver III - Visibility. - answers>30) What the bottom is made of can cause big changes in A visibility (how far you can see underwater). B temperature (how warm the water is). C current (the movement of water). D buoyancy (whether you sink or float). D Trying to defend themselves. Nearly all aquatic life injuries result from defensive actions by the animals. You can generally avoid injuries by being aware and respectful of aquatic organisms. See Being a Diver III - Aquatic Life. - answers>31) Most injuries caused by aquatic animals happen because the animals are A hungry. B curious. C injured. D trying to defend themselves. D Divers who are distressed or panicked often have their masks on their foreheads and don't use their breathing equipment. They usually have wide, unseeing eyes, quick and jerky movements, and do not follow instructions. They need immediate help because they may continue to struggle until exhausted. See Being a Diver III - Surface Problem Management - Responsive Diver. - answers>32) A diver at the surface is moving quickly and jerkily, has the mask off the face, the regulator/snorkel is out of the mouth, and the diver does not respond to directions. The diver is A giving the okay signal. B performing a predive safety check. C excited about the dive. D showing signs of distress (trouble). A Switch to my buddy's alternate air source. When out of air, your best option is usually to make an alternate air source ascent using your buddy's alternate air source. See Being a Diver III - Underwater Problem Management. - answers>33) I am close to my buddy and realize I am out of air. The best response is to A switch to my buddy's alternate air source. B make a controlled emergency swimming ascent (swim up to the surface making a continuous sound, like ah-h-h-h). C make a buoyant emergency ascent (dropping my weight system). D switch to my buddy's alternate air source and continue the dive. C Hold the regulator without sealing my mouth around the mouthpiece and "sip" the air I need as I ascend (go up). B Dive while tired, cold, sick, thirsty or injured. Secondary factors that can contribute to developing decompression sickness include fatigue, dehydration, cold, poor fitness, high body fat, illness, injuries, age, alcohol consumption before or after a dive, and vigorous exercise before, during or immediately after a dive. See Being a Diver IV - Decompression Sickness. - answers>39) I am likely to increase the risk of decompression sickness (DCS) if I A dive in poor visibility, strong moving water, and rough seas. B dive while tired, cold, sick, thirsty or injured. C do not look after my equipment. D am using a dive computer. C Breathe 100 percent oxygen and contact emergency medical care. For a suspected case of decompression illness, contact emergency medical care, lie down and breathe emergency oxygen. Almost all cases of decompression illness require treatment in a recompression chamber. Don't delay first aid and getting to treatment. See Using Dive Computers and Tables II - First Aid Treatment for Decompression Illness. - answers>40) If I think I have decompression sickness I should A stop diving until I feel better. B go back in the water. C breathe 100 percent oxygen and contact emergency medical care. D see a doctor when I can. B Reading the manufacturer's instructions. Before you dive with a computer, you need to read the manufacturer's dive computer manual. It's your responsibility to read and understand the manufacturer's instructions. See Using Dive Computers and Tables I - Planning Dives with Your Computer. - answers>41) The first step in using my dive computer is A setting the time and date. B reading the manufacturer's instructions. C calibrating it for enriched air nitrox. D setting it for fresh or salt water. B The maximum allowable time limits for depths (typically in 3-meter). You plan dives with your dive computer by activating it and scrolling the no stop limits. With most computers, you scroll depths in 3 meter increments, displaying the maximum time allowed at each depth. Agree with your buddy on a maximum depth based on the no stop times displayed. See Using Dive Computers and Tables I - Planning Dives with Your Computer. - answers>42) When planning a dive with a computer, I use the "plan" or "no stop scroll" mode to determine A the maximum depth of the previous dive. B the maximum allowable time limits for depths (typically in 3-meter). C whether my computer is compatible with my buddy's computer. D the best settings for my backup computer. A Each diver needs a personal computer. Divers can't share a dive computer. Each diver needs a computer and the buddy team should follow the most conservative computer to turn or end a dive. See Using Dive Computers and Tables I - Diving with Your Computer. - answers>43) When making computer assisted dives A each diver needs a personal computer. B each buddy team needs a computer C up to four divers may share a computer. D all divers may follow the dive guide's computer. B It would lose memory of the previous dive and not calculate repetitive dives correctly. Your dive computer tracks your personal theoretical nitrogen levels continuously during all your dives and surface intervals. For your safety, to keep an accurate account, you must not turn off your computer and need to use the same computer the entire diving day, on all dives. See Using Dive Computers and Tables I - Repetitive Diving. - answers>44) It's important that I do not turn off a dive computer between dives because A the divemaster may object because I can't recall the dive information for logging. B it would lose memory of the previous dive and not calculate repetitive dives correctly. C it won't come back on, or it may take a long time to power up. D doing so is hard on the batteries and may cause the computer to fail. B Follow the computer's instructions for decompression. If you exceed a no stop limit, you will have to make an emergency decompression stop. You computer will go into decompression mode and guide you by providing the depth of your emergency decompression stop and how long you have to stay there before you can ascend to the surface. Emergency decompression stops are required so that you don't exceed accepted theoretical nitrogen levels. See Using Dive Computers and Tables II - Emergency Decompression Stops. - answers>45) If I accidentally exceed my computer's no stop limits, I should A make a safety stop for three minutes at 5 meters. B follow the computer's instructions for decompression. C surface immediately, breathe oxygen and report my condition to the divemaster. D make a controlled ascent and refer to the manufacturer's literature for decompression procedures. A I should add an extra safety margin and stay well within my computer's limits. If you get cold or exercise a lot during a dive, you may end up with more dissolved nitrogen than calculated by your dive computer or tables. This could increase your decompression sickness risk. Stay well within the no stop limits, being even more conservative than normal by adding an extra safety margin. See Using Dive Computers and Tables II - Cold and Strenuous Dives. - answers>46) If I'm diving in cold water or under strenuous conditions A I should add an extra safety margin and stay well within my computer's limits. B nitrogen absorption will be slower so I can stay longer. C my dive computer will probably not work at all. D I do not need to do anything special. A 21 minutes B 32 minutes C 23 minutes D 19 minutes B 32 minutes Using RDP Table 1, find the depth on the top row - 18m - and follow the column down to the time or next greatest time - 51/49 - go across the find pressure group T. On RDP Table 3, follow 18m row across until you find a time in the blue box equal to 24 minutes - follow this up to pressure group L. Go to RDP Table 2, follow the L column from the bottom until it meets the T row - the minimum surface interval is 32 minutes. See the RDP/eRDPML Instructions for Use booklet. - answers>52) I am planning to make two dives. The first dive is to 18 meters for 49 minutes. The second dive is to 18 meters for 24 minutes. How long would I have to stay on the surface (minimum surface interval) to do these two dives safely? A 26 minutes B 32 minutes C 54 minutes D 59 minutes A Ascend (go up) right away to 5 meters and stay there for at least 8 minutes before going to the surface, and not dive for six hours. Using RDP Table 1, find the next greatest depth on the top row - 18m - and follow the column down to the time or next greatest time - 48/47 - go across the find pressure group S. In RDP Table 2, follow S to find 30 minutes (between 28-32 minutes) and follow that column down to pressure group L. Go to RDP Table 3, follow the next greatest depth - 18m - across to meet L. The number in the blue box - 24 - is allowed bottom time. Staying 25 minutes means you've overstayed your bottom time by one minute. The rule is to ascend to 5 meters and stay there for at least 8 minutes before going to the surface, and not dive for six hours. See the RDP/eRDPML Instructions for Use booklet. - answers>53) I dive to 17 meters for 47 minutes. After a 30-minute surface interval, I do a second dive to 17 meters. Losing track of time, I notice my bottom time is now 25 minutes. According to the General Rules, what should I do? Note: you may have to scroll down to see the whole question or to submit your answer. A Ascend (go up) right away to 5 meters and stay there for at least 8 minutes before going to the surface, and not dive for six hours. B Go to the surface right away and contact the nearest recompression chamber. C Ascend (go up) right away to 5 meters and stay there for 3 minutes before going to the surface. D Ascend (go up) to 3 meters and stay there until I use up my air, and not dive for 24 hours. D R Using RDP Table 1, find the depth on the top row - 22m - and follow the column down to the time or next greatest time - 21 - go across the find pressure group I/K. In RDP Table 2, follow pressure group row to find 1 hour and follow that column down to pressure group C. Go to RDP Table 3, follow C down to meet - 18m. The number in the white box - 15/14 - is the residual nitrogen time. Add this time to the bottom time - 15/14 + 30 = 45/44. On RDP Table 1, follow the 18m column down to the time or next greater time - Pressure Group is R. See the RDP/eRDPML Instructions for Use booklet. - answers>54) A group of Advanced Open Water Divers plans to make two dives. The first dive is on a reef in 22 meters of water for 20 minutes. The group then remains on the surface for 1 hour. The second dive is on a wreck in 18 meters of water, with a planned bottom time of 30 minutes. What will be the ending pressure group after the second dive? A L B K C S D R B 22 meters feet for 30 minutes This general rule is printed on the RDP Table: if you are planning a dive in cold water or under conditions that might be strenuous, plan the dive assuming the depth is 4 meters deeper than actual. See the RDP/eRDPML Instructions for Use booklet. - answers>55) My buddy and I are planning to dive at a site where the water and air temperature are near freezing. We plan to dive to 18 meters for 30 minutes. What dive profile would we use when planning our dive? A 22 meters for 40 minutes B 22 meters for 30 minutes C 20 meters for 30 minutes D 18 meters for 30 minutes C 34 minutes Using RDP Table 1, find the depth on the top row - 25m - and follow the column down to the time - 22 - go across the find pressure group L. In RDP Table 2, follow pressure group row to find 52 minutes and follow that column down to pressure group D. Go to RDP Table 3, follow D down to meet - 20m. The number in the white box - 15/13 - is the residual nitrogen time. Add this time to the bottom time - 15/13 + 27 = 42/40. On RDP Table 1, follow the 20m column down to the time or next greater time - pressure group is S/T. In RDP Table 2, follow pressure group row to find 1 hour and 2 minutes and follow that column down to pressure group G.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved