Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Quantum Mechanics: Derivation of Schrödinger's Equation and Ground State Transition - Prof, Study notes of Mathematics

A detailed explanation of perturbation theory in quantum mechanics, focusing on the derivation of schrödinger's equation and the calculation of the ground state transition amplitude. The perturbation series, its form in the interaction picture, and the application to the ground state of a simple harmonic oscillator.

Typology: Study notes

2009/2010

Uploaded on 03/28/2010

koofers-user-798
koofers-user-798 🇺🇸

10 documents

1 / 2

Toggle sidebar

Related documents


Partial preview of the text

Download Quantum Mechanics: Derivation of Schrödinger's Equation and Ground State Transition - Prof and more Study notes Mathematics in PDF only on Docsity! Math 260: Perturbation theory Miguel Carrión Álvarez 1. The perturbation series. Starting with ψ(t) = ∑ n≥0 ∫ t 0 ∫ tn 0 · · · ∫ t2 0 e−i(t−tn)H0(−iV )e−i(tn−tn−1)H0 · · · e−i(t2−t1)H0(−iV )e−it1H0ψdt1 · · · dtn−1 dtn we get ∂tψ(t) = ∑ n≥1 ∫ t 0 ∫ tn−1 0 · · · ∫ t2 0 (−iV )e−i(t−tn−1)H0 · · · e−i(t2−t1)H0(−iV )e−it1H0ψdt1 · · · dtn−2 dtn−1+ + ∑ n≥1 ∫ t 0 ∫ tn 0 · · · ∫ t2 0 (−iH0)e−i(t−tn)H0 · · · e−i(t2−t1)H0(−iV )e−it1H0ψdt1 · · · dtn−1 dtn =− i(V +H0)ψ(t) which is Schrödinger’s equation. 2. The perturbation series in the interaction picture. ψ(t) = ∑ n≥0 ∫ t 0 ∫ tn 0 · · · ∫ t2 0 e−i(t−tn)H0(−iV )e−i(tn−tn−1)H0 · · · e−i(t2−t1)H0(−iV )e−it1H0ψdt1 · · · dtn−1 dtn = =e−itH0 ∑ n≥0 ∫ t 0 ∫ tn 0 · · · ∫ t2 0 [ eitnH0(−iV )e−itnH0 ] · · · [eit1H0(−iV )e−it1H0 ]ψdt1 · · · dtn−1 dtn implies ψint(t) = ∑ n≥0 ∫ t 0 ∫ tn 0 · · · ∫ t2 0 [ −iV (tn) ] · · · [ −iV (t1) ] ψdt1 · · · dtn−1 dtn 3. Ground state transition amplitude. Using the facts that H01 = 0, and H0z = z, and the representation a ∼ ∂z and a∗ ∼ z, 〈1, e−i(t−t1)H0(−iV )e−it1H01〉 = λ i √ 2 〈1, e−i(t−t1)H0(a+ a∗)e−it1H01〉 = λ i √ 2 〈1, e−i(t−t1)H0(a+ a∗)1〉 = = λ i √ 2 〈1, e−i(t−t1)H0(0 + z)〉 = λ i √ 2 〈1, e−i(t−t1)z〉 = λ i √ 2 e−i(t−t1)〈1, z〉 = 0. Similarly, 〈1, e−i(t−t2)H0(−iV )e−i(t2−t1)H0(−iV )e−it1H01〉 =−λ 2 2 〈1, e−i(t−t2)H0(a+ a∗)e−i(t2−t1)H0(a+ a∗)1〉 = = −λ2 2 〈1, e−i(t−t2)H0(a+ a∗)e−i(t2−t1)H0(0 + z)〉 = = −λ2 2 e−i(t2−t1)〈1, e−i(t−t2)H0(a+ a∗)z〉 = = −λ2 2 e−i(t2−t1)〈1, e−i(t−t2)H0(1 + z2)〉 = = −λ2 2 e−i(t2−t1)〈1, (1 + e−i(t−t2)2z2)〉 = = −λ2 2 e−i(t2−t1)〈1, 1〉 = −λ 2 2 e−i(t2−t1).
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved